Задача о замене оборудования. Оптимальные сроки замены старого оборудования

Введение………………...………………………………………………...……….3

Глава 1. Теоретическое описание модели замены оборудования…………..….4

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития…………...………………………………..……...4

1.2. Информационно-методическое обеспечение экономического моделирования……………...……...…………………………………...…..4

1.2.1. Методическая база решения модели………………….…………....4

1.2.2. Информационно-методическое обеспечение метода…………..…9

Глава 2. Расчет показателей экономико-математической модели и экономическая интерпретация результатов………………………….………...13

2.1. Нахождение условного оптимального решение задачи…………...15

2.2. Составление оптимального плана замены оборудования…………21

Заключение…………………………………………………………………….....24

Список литературы…………………………………………………………..…..26

Приложения…………………………...………………………………………....27

Введение

Во всем мире существует множество предприятий, которые используют для производства своей продукции машинное оборудование. Поэтому при его внедрении нужно составлять оптимальный план использования и замены оборудования. Задачи по замене оборудования рассматриваются как многоэтаповый процесс, который характерен для динамического программирования.

Многие предприятия сохраняют или заменяют оборудование по своей интуиции, не применяя методы динамического программирования. Применять эти методы целесообразно, так как это позволяет наиболее четко максимизировать прибыль или минимизировать затраты.

Целью данной работы является определение оптимальных сроков замены старого оборудования.

Задачи этой работы состоят:

· в нахождении условного оптимального решения задачи;

· в составлении оптимального плана замены оборудования.

Старение оборудования включает его физический и моральный износ. В результате чего увеличиваются производственные затраты, растут затраты на обслуживание и ремонт, снижается производительность труда и ликвидная стоимость. Критерием оптимальности является либо прибыль от эксплуатации оборудования, либо суммарные затраты на эксплуатацию в течение планируемого периода.

Курсовая содержит 2 главы, 12 таблиц, 1 приложение, 5 рисунков и оформлена на 30 страницах.

Глава 1. Теоретическое описание модели замены оборудования

1.1. Характеристика состояния хозяйствующего субъекта и выявление тенденций его развития

Для осуществления своей эффективной деятельности производственные объединения и предприятия должны периодически производить замену используемого ими оборудования. При этой замене учитывается производительность используемого оборудования и затраты, связанные с содержанием и ремонтом оборудования.

Характерным для динамического программирования является подход к решению задачи по этапам, с каждым из которых ассоциирована одна управляемая переменная. Набор рекуррентных вычислительных процедур, связывающих различные этапы, обеспечивает получение допустимого решения задачи в целом при достижении последнего этапа.

() (1.1)

(1.1) - принцип оптимальности Беллмана.

(1.2)

где t – возраст оборудования к началу k-го года ( k=1,2,3,4,5,6,7,8,9,10);

– управление, реализуемое к началу k-го года; P 0 – стоимость нового оборудования.

(1.2) - функциональное уравнение Беллмана.

1.2. Информационно-методическое обеспечение экономического моделирования

1.2.1. Методическая база решения модели

В задачах динамического программирования экономический процесс зависит от времени (от нескольких периодов (этапов) времени), поэтому находится ряд оптимальных решений (последовательно для каждого этапа), обеспечивающих оптимальное развитие всего процесса в целом. Задачи динамического программирования называются многоэтапными или многошаговыми. Динамическое программирование представляет собой математический аппарат, позволяющий осуществлять оптимальное планирование многошаговых управляемых процессов и процессов, зависящих от времени. Экономический процесс называется управляемым, если можно влиять на ход его развития. Управлением называется совокупность решений, принимаемых на каждом этапе для влияния на ход процесса. В экономических процессах управление заключается в распределении и перераспределении средств на каждом этапе. Например, выпуск продукции любым предприятием – управляемый процесс, так как он определяется изменением состава оборудования, объемом поставок сырья, величиной финансирования и т.д. Совокупность решений, принимаемых в начале каждого года планируемого периода по обеспечению предприятия сырьем, замене оборудования, размерам финансирования и т.д., является управлением. Казалось бы, для получения максимального объема выпускаемой продукции проще всего вложить максимально возможное количество средств и использовать на полную мощность оборудование. Но это привело бы к быстрому изнашиванию оборудования и, как следствие, к уменьшению выпуска продукции. Следовательно, выпуск продукции надо спланировать так, чтобы избежать нежелательных эффектов. Необходимо предусмотреть мероприятия, обеспечивающие пополнение оборудования по мере изнашивания, т.е. по периодам времени. Последнее хотя и приводит к уменьшению первоначального объема выпускаемой продукции, но обеспечивает в дальнейшем возможность расширения производства. Таким образом, экономический процесс выпуска продукции можно считать состоящим из нескольких этапов (шагов), на каждом из которых осуществляется влияние на его развитие.

Началом этапа (шага) управляемого процесса считается момент принятия решения (о величине капитальных вложений, о замене оборудования определенного вида и т.д.). Под этапом обычно понимают хозяйственный год.

Динамическое программирование, используя поэтапное планирование, позволяет не только упростить решение задачи, но и решить те из них, к которым нельзя применить методы математического анализа. Упрощение решения достигается за счет значительного уменьшения количества исследуемых вариантов, так как вместо того, чтобы один раз решать сложную многовариантную задачу, метод поэтапного планирования предполагает многократное решение относительно простых задач.

Планируя поэтапный процесс, исходят из интересов всего процесса в целом, т.е. при принятии решения на отдельном этапе всегда необходимо иметь в виду конечную цель.

Предположим, какая-то система S находится в некотором начальном состоянии S 0 и является управляемой. Таким образом, благодаря осуществлению некоторого управления U указанная система переходит из начального состояния S 0 в конечное состояние S к. При этом качество каждого из реализуемых управлений U характеризуется соответствующим значением функции W(U). Задача состоит в том, чтобы из множества возможных управлений U найти такое U*, при котором функция W(U) принимает экстремальное (максимальное или минимальное) значение W(U*).

Задачи динамического программирования имеют геометрическую интерпретацию. Состояние физической системы S можно описать числовыми параметрами, например расходом горючего и скоростью, количеством вложенных средств и т.д. Назовем эти параметры координатами системы; тогда состояние системы можно изобразить точкой S, а переход из одного состояния S 1 в другое S 2 – траекторией точки S. Управление U означает выбор определенной траектории перемещения точки S из S 1 в S 2 , т.е. установление определенного закона движения точки S.

Оптимальная стратегия замены оборудования

Одной из важных экономических проблем является определение оптимальной стратегии в замене старых станков, агрегатов, машин на новые.

Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты по выпуску продукции на старом оборудовании, увеличиваются затраты на его ремонт и обслуживание, снижаются производительность и ликвидная стоимость.

Наступает время, когда старое оборудование выгоднее продать, заменить новым, чем эксплуатировать ценой больших затрат; причем его можно заменить новым оборудованием того же вида или новым, более совершенным.

Оптимальная стратегия замены оборудования состоит в определении оптимальных сроков замены. Критерием оптимальности при этом может служить прибыль от эксплуатации оборудования, которую следует оптимизировать, или суммарные затраты на эксплуатацию в течение рассматриваемого промежутка времени, подлежащие минимизации.

Введем обозначения: r(t) - стоимость продукции, производимой за один год на единице оборудования возраста t лет;

u(t) - ежегодные затраты на обслуживание оборудования возраста t лет;

s(t) - остаточная стоимость оборудования возраста t лет;

Р - покупная цена оборудования.

Рассмотрим период N лет, в пределах которого требуется определить оптимальный цикл замены оборудования.

Обозначим через fN(t) максимальный доход, получаемый от оборудования возраста t лет за оставшиеся N лет цикла использования оборудования при условии оптимальной стратегии.

Возраст оборудования отсчитывается в направлении течения процесса. Так, t = 0 соответствует случаю использования нового оборудования. Временные же стадии процесса нумеруются в обратном направлении по отношению к ходу процесса. Так, N = 1 относится к одной временной стадии, остающейся до завершения процесса, а N = N - к началу процесса.

На каждом этапе N–стадийного процесса должно быть принято решение о сохранении или замене оборудования. Выбранный вариант должен обеспечивать получение максимальной прибыли.

Функциональные уравнения, основанные на принципе оптимальности, имеют вид:

Первое уравнение описывает N–стадийный процесс, а второе- одностадийный. Оба уравнения состоят из двух частей: верхняя строка определяет доход, получаемый при сохранении оборудования; нижняя - доход, получаемый при замене оборудования и продолжении процесса работы на новом оборудовании.

В первом уравнении функция r(t) - u(t) есть разность между стоимостью произведенной продукции и эксплуатационными издержками на N–й стадии процесса.

Функция fN–1 (t + 1) характеризует суммарную прибыль от (N - 1) оставшихся стадий для оборудования, возраст которого в начале осуществления этих стадий составляет (t + 1) лет.

Нижняя строка в первом уравнении характеризуется следующим образом: функция s(t) - Р представляет чистые издержки по замене оборудования, возраст которого t лет.

Функция r(0) выражает доход, получаемый от нового оборудования возраста 0 лет. Предполагается, что переход от работы на оборудовании возраста t лет к работе на новом оборудовании совершается мгновенно, т.е. период замены старого оборудования и переход на работу на новом оборудовании укладываются в одну и ту же стадию.

Последняя функция fN–1 представляет собой доход от оставшихся N - 1 стадий, до начала осуществления которых возраст оборудования составляет один год.

Аналогичная интерпретация может быть дана уравнению для одностадийного процесса. Здесь нет слагаемого вида f0(t + 1), так как N принимает значение 1, 2,..., N. Равенство f0(t) = 0 следует из определения функции fN(t).

Уравнения являются рекуррентными соотношениями, которые позволяют определить величину fN(t) в зависимости от fN–1(t + 1). Структура этих уравнений показывает, что при переходе от одной стадии процесса к следующей возраст оборудования увеличивается с t до (t + 1) лет, а число оставшихся стадий уменьшается с N до (N - 1).

Расчет начинают с использования первого уравнения. Уравнения позволяют оценить варианты замены и сохранения оборудования, с тем чтобы принять тот из них, который предполагает больший доход. Эти соотношения дают возможность не только выбрать линию поведения при решении вопроса о сохранении или замене оборудования, но и определить прибыль, получаемую при принятии каждого из этих решений.

Пример. Определить оптимальный цикл замены оборудования при следующих исходных данных: Р = 10, S(t) = 0, f(t) = r(t) - u(t), представленных в таблице.

Решение. Уравнения запишем в следующем виде:

Вычисления продолжаем до тех пор, пока не будет выполнено условие f1(1) > f2(2), т.е. в данный момент оборудование необходимо заменить, так как величина прибыли, получаемая в результате замены оборудования, больше, чем в случае использования старого. Результаты расчетов помещаем в таблицу, момент замены отмечаем звездочкой, после чего дальнейшие вычисления по строчке прекращаем.

Можно не решать каждый раз уравнение, а вычисления проводить в таблице. Например, вычислим f4(t):

Дальнейшие расчеты для f4(t) прекращаем, так как f4(4) = 23 По результатам вычислений и по линии, разграничивающей области решений сохранения и замены оборудования, находим оптимальный цикл замены оборудования. Для данной задачи он составляет 4 года.

Ответ. Для получения максимальной прибыли от использования оборудования в двенадцатиэтапном процессе оптимальный цикл состоит в замене оборудования через каждые 4 года.

Оптимальное распределение ресурсов

Пусть имеется некоторое количество ресурсов х, которое необходимо распределить между п различными предприятиями, объектами, работами и т.д. так, чтобы получить максимальную суммарную эффективность от выбранного способа распределения.

Введем обозначения: xi - количество ресурсов, выделенных i–му предприятию (i = );

gi(xi) - функция полезности, в данном случае это величина дохода от использования ресурса xi, полученного i–м предприятием;

fk(x) - наибольший доход, который можно получить при использовании ресурсов х от первых k различных предприятий.

Сформулированную задачу можно записать в математической форме:

при ограничениях:

Для решения задачи необходимо получить рекуррентное соотношение, связывающее fk(x) и fk–1(x).

Обозначим через хk количество ресурса, используемого k–м способом (0 ≤ xk ≤ х), тогда для (k - 1) способов остается величина ресурсов, равная (x - xk). Наибольший доход, который получается при использовании ресурса (x - xk) от первых (k - 1) способов, составит fk–1(x - xk).

Для максимизации суммарного дохода от k–гo и первых (k - 1) способов необходимо выбрать xk таким образом, чтобы выполнялись соотношения

Рассмотрим конкретную задачу по распределению капиталовложений между предприятиями.

Распределение инвестиций для эффективного использования потенциала предприятия

Совет директоров фирмы рассматривает предложения по наращиванию производственных мощностей для увеличения выпуска однородной продукции на четырех предприятиях, принадлежащих фирме.

Для расширения производства совет директоров выделяет средства в объеме 120 млн р. с дискретностью 20 млн р. Прирост выпуска продукции на предприятиях зависит от выделенной суммы, его значения представлены предприятиями и содержатся в таблице.

Найти распределение средств между предприятиями, обеспечивающее максимальный прирост выпуска продукции, причем на одно предприятие можно осуществить не более одной инвестиции.

Решение. Разобьем решение задачи на четыре этапа по количеству предприятий, на которых предполагается осуществить инвестиции.

Рекуррентные соотношения будут иметь вид:

для предприятия № 1

для всех остальных предприятий

Решение будем проводить согласно рекуррентным соотношениям в четыре этапа.

1–й этап. Инвестиции производим только первому предприятию. Тогда

2–й этап. Инвестиции выделяем первому и второму предприятиям. Рекуррентное соотношение для 2–го этапа имеет вид

при х = 20 f2(20) = max (8 + 0,0 + 10) = max (8, 10) = 10,

при x = 40 f2(40) = max (16,8 + 10,20) = max (16, 18, 20) =20,

при х = 60 f2(60) = max (25,16 + 10, 8 + 20,28) = max (25,26, 28,28) =28,

при х = 80 f2(80) = max (36,25 + 10,16 + 20,8 + 28,40) = max (36, 35, 36, 36, 40) = 40,

при х = 100 f2(100) = max (44,36 + 10,25 + 20,16 + 28,8 + 40,48) = max (44, 46, 45, 44, 48, 48) = 48,

при х = 120 f2(120) = max (62,44 + 10,36 +20,25 + 28,16 + 40,8 + 48,62) = max (62, 54, 56, 53, 56, 56, 62) = 62.

3–й этап. Финансируем 2–й этап и третье предприятие. Расчеты проводим по формуле

при х = 20 f3(20) = mах (10, 12) = 12,

при x = 40 f3(40) = max (20,10 + 12,21) = max (20, 22, 21) = 22,

при х = 60 f3(60) = max (28,20 + 12,10 + 21,27) = max (28, 32, 31, 27) = 32,

при х = 80 f3(80) = max (40,28 + 12,20 + 21,10 + 27,38) = max (40, 40, 41, 37, 38) = 41,

при x = 100 f3(100) = max (48,40 + 12,28 + 21,20 + 27,10 + 38,50) = max (48, 52, 49, 47, 48, 50) = 52,

при х = 120 f3(120) = max (62,48 + 12,40 + 21,28 + 27,20 + 38,10 + 50,63) = max (62, 60, 61, 55, 58, 60, 63) = 63.

4–й этап. Инвестиции в объеме 120 млн р. распределяем между 3–м этапом и четвертым предприятием.

При х = 120 f4(120) = max (63,52 + 11,41 + 23,32 + 30,22 + 37,12 + 51,63) = max (63, 63, 64, 62, 59, 63, 63) = 64.

Получены условия управления от 1–го до 4–го этапа. Вернемся от 4–го к 1–му этапу. Максимальный прирост выпуска продукции в 64 млн р. получен на 4–м этапе как 41 + 23, т.е. 23 млн р. соответствуют выделению 40 млн р. четвертому предприятию (см. табл. 29.3). Согласно 3–му этапу 41 млн р. получен как 20 + 21, т.е. 21 млн р. соответствует выделеник 40 млн р. третьему предприятию. Согласно 2–этапу 20 млн р. получено при выделении 40 млн р. второму предприятию.

Таким образом, инвестиции в объеме 120 млн р. целесообразно выделить второму, третьему и четвертому предприятиям по 40 млн р. каждому, при этом прирост продукции будет максимальным и составит 64 млн р.

Минимизация затрат на строительство и эксплуатацию предприятий

Задача по оптимальному размещению производственных предприятий может быть сведена к задаче распределения ресурсов согласно критерию минимизации с учетом условий целочисленности, накладываемых на переменные.

Пусть задана потребность в пользующемся спросом продукте на определенной территории. Известны пункты, в которых можно построить предприятия, выпускающие данный продукт. Подсчитаны затраты на строительство и эксплуатацию таких предприятий.

Необходимо так разместить предприятия, чтобы затраты на их строительство и эксплуатацию были минимальные.

Введем обозначения:

х - количество распределяемого ресурса, которое можно использовать п различными способами,

xi - количество ресурса, используемого по i–му способу (i = );

gi(xi) - функция расходов, равная, например, величине затрат на производство при использовании ресурса xi по i–му способу;

φk(x) - наименьшие затраты, которые нужно произвести при использовании ресурса х первыми k способами.

Необходимо минимизировать общую величину затрат при освоении ресурса x всеми способами:

при ограничениях

Экономический смысл переменных xi состоит в нахождении количества предприятий, рекомендуемого для строительства в i–м пункте. Для удобства расчетов будем считать, что планируется строительство предприятий одинаковой мощности.

Рассмотрим конкретную задачу по размещению предприятий.

Пример. В трех районах города предприниматель планирует построить пять предприятий одинаковой мощности по выпуску хлебобулочных изделий, пользующихся спросом.

Необходимо разместить предприятия таким образом, чтобы обеспечить минимальные суммарные затраты на их строительство и эксплуатацию. Значения функции затрат gi(x) приведены в таблице.

В данном примере gi(х) - функция расходов в млн р., характеризующая величину затрат на строительство и эксплуатацию в зависимости от количества размещаемых предприятий в i–м районе;

φk(x) - наименьшая величина затрат в млн. р., которые нужно произвести при строительстве и эксплуатации предприятий в первых k районах.

Решение. Решение задачи проводим с использованием рекуррентных соотношений: для первого района

для остальных районов

Задачу будем решать в три этапа.

1–й этап. Если все предприятия построить только в первом районе, то

минимально возможные затраты при х = 5 составляют 76 млн р.

2–й этап. Определим оптимальную стратегию при размещении предприятий только в первых двух районах по формуле

Найдем φ2(l):

g2(1) + φ1(0) = 10 + 0 = 10,

g2(0) + φ1(l)= 0 +11 = 11,

φ2(l) = min (10, 11) = 10.

Вычислим φ2(2):

g2(2) + φ1(0) = 19 + 0 = 19,

g2(l) + φ1(l) = 10 + 11 = 21,

g2(0) + φ1 (2) = 0 + 18 = 18,

φ2(2) = min (19, 21, 18) = 18.

Найдем φ2(3):

g2(3) + φ1 (0) = 34 + 0 = 34,

g2(2) + φ1(l) = 19 + 11 = 30,

g2(1) + φ1(2) = 10 + 18 = 28,

g2(0) + φ1(3) = 0 + 35 = 35,

φ2(3) = min (34, 30, 28, 35) = 28.

Определим φ2(4):

g2(4) + φ1(0) = 53 + 0 = 53,

g2(3) + φ1(l) = 34 + 11 = 45,

g2(2) + φ1(2) = 19 + 18 = 37,

g2(l) + φ1(3) = 10 + 35 = 45,

g2(0) +φ1(4) = 0 + 51 = 51,

φ2(4) = min (53, 45, 37, 45, 51) = 37.

Вычислим φ2(5):

g2(5) + φ1(0) = 75 + 0 = 75,

g2(4) + φ1(l) = 53 + 11 = 64,

g2(3) + φ1(2) = 34 + 18 = 52,

g2(2) + φ1(3) = 19 + 35 = 54,

g2(1) + φ1(4) = 10 + 51 = 61,

g2(0) + φ1(5) = 0 + 76 = 76,

φ2(5) = min (75, 64, 52, 54, 61, 76) = 52.

3–й этап. Определим оптимальную стратегию при размещении пяти предприятий в трех районах по формуле

φ3(x) = min{g3(x3) + φ2(x – х3)}.

Найдем φ3(5):

g3(5) + φ2(0) = 74 + 0 = 74,

g3(4) + φ2(1) = 54 + 10 = 64,

g3(3) + φ2(2) = 36 + 18 = 54,

g3(2) +φ2(3) = 20 + 28 = 48,

g3(1) + φ2(4) = 9 + 37 = 46,

g3(0) + φ2(5) = 0 + 52 = 52,

φ3(5) = min (74, 64, 54, 48, 46, 52) = 46.

Минимально возможные затраты при х = 5 составляют 46 млн р.

Определены затраты на строительство предприятий от 1–го до 3–го этапа. Вернемся 3–го к 1–му этапу. Минимальные затраты в 46 млн р. на 3–м этапе получены как 9 + 37, т.е. 9 млн р. соответствуют строительству одного предприятия в третьем районе (см. табл. 29.4). Согласно 2–му этапу 37 млн р. получены как 19 + 18, т.е. 19 млн р. соответствуют строительству двух предприятий во втором районе. Согласно 1–му этапу 18 млн р. соответствуют строительству двух предприятий в первом районе.

Ответ. Оптимальная стратегия состоит в строительстве одного предприятия в третьем районе, по два предприятия во втором и первом районах, при этом минимальная стоимость строительства и эксплуатации составит 46 ден. ед.

Нахождение рациональных затрат при строительстве трубопроводов и транспортных артерий

Требуется проложить путь (трубопровод, шоссе) между двумя пунктами А и В таким образом, чтобы суммарные затраты на его сооружение были минимальные.

Решение. Разделим расстояние между пунктами А и В на шаги (отрезки). На каждом шаге можем двигаться либо строго на восток (по оси X), либо строго на север (по оси Y). Тогда путь от А в В представляет ступенчатую ломаную линию, отрезки которой параллельны одной из координатных осей. Затраты на сооружение каждого из отрезков известны (рис. 29.2) в млн р.

Разделим расстояние от А до В в восточном направлении на 4 части, в северном – на 3 части. Путь можно рассматривать как управляемую систему, перемещающуюся под влиянием управления из начального состояния А в конечное В. Состояние этой системы перед началом каждого шага будет характеризоваться двумя целочисленными координатами х и у. Для каждого из состояний системы (узловой точки) найдем условное оптимальное управление. Оно выбирается так, чтобы стоимость всех оставшихся шагов до конца процесса была минимальна. Процедуру условной оптимизации проводим в обратном направлении, т.е. от точки В к точке А.

Найдем условную оптимизацию последнего шага.

оптимальный динамическое программирование стратегия

В общем виде проблема ставится следующим образом: определить оптимальную стратегию использования оборудования в период времени длительностью m лет, причем прибыль за каждые I лет, i= от использования оборудования возраста t лет должна быть максимальной.

Известны: r(t) - выручка от реализации продукции, произведенной за год на оборудовании возраста t лет, l(t) - годовые затраты, зависящие от возраста оборудования t, c(t) - остаточная стоимость оборудования возраста t лет, P - стоимость нового оборудования. Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, выраженный в годах.

Для построения математической модели последовательно выполняются этапы, сформулированные ниже.

1. Определение числа шагов. Число шагов равно числу лет, в течение которых эксплуатируется оборудование.

2. Определение состояний системы. Состояние системы характеризуется возрастом оборудования t; t=.

3. Определение управлений. В начале i-го шага, i= может быть выбрано одно из двух управлений: заменять или не заменять оборудование. Каждому варианту управления приписывается число

uс - если оборудование не заменяется;

uз - если оборудование заменяется.

4. Определение функции выигрыша на i-м шаге. Функция выигрыша на на i-м шаге - это прибыль от использования оборудования к концу на i-го года эксплуатации, t=, i=.

u1= uс - если оборудование в начале i-го года не заменяется;

u2= uз - если оборудование заменяется.

Таким образом, если оборудование не продается, то прибыль от его использования - это разность между стоимостью произведенной продукции и эксплуатационными издержками. При замене оборудования прибыль составляет разность между остаточной стоимость оборудования и стоимостью нового оборудования, к которой прибавляе6тся разность между стоимостью продукции и эксплуатационными издержками для нового оборудования, возраст которого в начале i-го шага составляет 0 лет.

5. Определение функции изменения состояния

u1 uс - если Xi=0

u2= uз - если Xi=1

6. Составление функционального уравнения для i=m.

7. Составление основного функционального уравнения

Где Wi(t) - прибыль от использования оборудования возраста t лет с i-го шага (с конца i-го года) до конца периода эксплуатации.

Wi+1(t+1) - прибыль от использования оборудования возраста t+1год с (i+1)-го шага до конца периода эксплуатации;

Таким образом, математическая модель задачи построена.

Алгоритм решения задачи

Введём обозначения:

t- возраст оборудования.

L(t) - производство продукции на оборудовании, возраст которого t лет.

R(t) - расходы на содержание оборудования.

P(t) - остаточная стоимость оборудования.

Р - стоимость нового оборудования

Fn(t)- прибыль от старого оборудования возраст которого t лет.

n-последний год.

на старом оборудовании (1)

Это функциональное уравнение

Форма входного документа

Данные могут быть занесены с помощью таблицы:

Таблица №1 . Данные входной информация.

По формуле

Описание программно-технических средств

Разработка программы производилась на языке программирования Borland

Delphi 7.0 при помощи операционной системы Microsoft Windows XP Professional

При разработке программы, использовались компоненты Delphi:

String Grid - для заполнения справочников и отображения результатов

Edit - для ввода значений

Button - для создания кнопки

Label - создание меток, для удобства использования

Image - изображения

MainMenu - Меню программы

OpenDialog - открыть диалог

При разработки программного обеспечения так же использовались следующие системные утилиты:

Антивирусные программа (Dr.Web 4.44)

Программы архиваторы (WinRar v3.45).

утилиты Microsoft Office (Microsoft Word, Excel).

графические редакторы (PhotoShop v CS3)

При разработке программного обеспечения использовался ПК со следующими характеристиками:

Процессор: Intel Pentium(R) 3.00 GHz

Оперативная память: 1Gb DDR2 PC 533

Видео карта: NVIDIA Gee Force FX 6600 128Mb

Жесткий диск: 200 Gb

Монитор: 17" 1280x1025@75Hz

Отладочный пример

найдём максимальную прибыль при замене оборудования через 2 года:

По формуле

Вывод: Максимальную прибыль в размере 215 единиц мы получим, если поменяем оборудование через 2 года на третий.

Описание программы

Программа «Решение задач о замене оборудования» предназначена для предприятий, занимающихся каким-либо родом деятельности, требующего использования определенного оборудования. В силу ряда причин, оборудование изнашивается физически, т.е. ломается и не подлежит ремонту или возникают такие неисправности, при которых проще купить новое оборудование, чем ремонтировать старое, либо изнашивается морально, т.е. темпы роста экономического развития отрасли производства этого оборудования очень велики. Таким образом, для того, чтобы «производство продукции» на таком оборудовании достигало максимального эффекта, его необходимо периодически менять. Эта программа подсчитывает количество лет, через которое нужно сменить оборудование, чтобы получить максимальную прибыль.

Для разработки программы «Решение задач о замене оборудования» был использован язык программирования Delphi 6. В настоящее время эта среда объектно-ориентированного программирования очень популярна, ее основой является язык Object Pascal. Она позволяет создавать приложения различной степени сложности - от простейших программ до профессиональных, предназначенных для работы с базами данных. Кроме того, помощь по программе оформлена в виде HTML-страниц с помощью программы Arachnophilia.

Вся работа с программой основана на работе с меню, с его описанием можно ознакомиться в пункте меню Помощь/Содержание/Работа с меню.

Данная программа создана при выполнении курсового проекта по предмету «Математические методы», на данную тему.

Важной экономической проблемой является своевременное обновление оборудования: автомобилей, станков, телевизоров, магнитол и т.п. Старение оборудования включает физический и моральный износ, в результате чего растут затраты на ремонт и обслуживание, снижается производительность труда и ликвидная стоимость. Задача заключается в определении оптимальных сроков замены старого оборудования. Критерием оптимальности являются доход от эксплуатации оборудования (задача максимизации) либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Предположим, что планируется эксплуатация оборудования в течение некоторого периода времени продолжительностью n лет. Оборудование имеет тенденцию с течением времени стареть и приносить все меньший доход r (t ) (t – возраст оборудования). При этом есть возможность в начале любого года продать устаревшее оборудование за цену S (t ), которая также зависит от возраста t , и купить новое оборудование за цену P .

Под возрастом оборудования понимается период эксплуатации оборудования после последней замены, определенный в годах. Требуется найти оптимальный план замены оборудования с тем, чтобы суммарный доход за все n лет был бы максимальным, учитывая, что к началу эксплуатации возраст оборудования составлял t 0 лет.

Исходными данными в задаче являются доход r (t ) от эксплуатации в течение одного года оборудования возраста t лет, остаточная стоимость S (t ), цена нового оборудования P и начальный возраст оборудования t 0 .

t n
r r(0) r(1) r(n)
S S(0) S(1) S(n)

При составлении динамической модели выбора оптимальной стратегии обновления оборудования процесс замены рассматривается как n -шаговый, т. е. период эксплуатации разбивается на n шагов.

Выберем в качестве шага оптимизацию плана замены оборудования с k -го по n -ый годы. Очевидно, что доход от эксплуатации оборудования за эти годы будет зависеть от возраста оборудования к началу рассматриваемого шага, т. е. k -го года.

Поскольку процесс оптимизации ведется с последнего шага (k = n ), то на k -ом шаге неизвестно, в какие годы с первого по (k -1)-й должна осуществляться замена и, соответственно, неизвестен возраст оборудования к началу k -го года. Возраст оборудования, который определяет состояние системы, обозначим t . На величину t накладывается следующее ограничение:

1 ≤ t t 0 + k – 1 (19.5)

Выражение (9.5) свидетельствует о том, что t не может превышать возраст оборудования за (k –1)-й год его эксплуатации с учетом возраста к началу первого года, который составляет t 0 лет; и не может быть меньше единицы (этот возраст оборудование будет иметь к началу k -го года, если замена его произошла в начале предыдущего (k –1)-го года).

Таким образом, переменная t в данной задаче является переменной состояния системы на k -ом шаге. Переменной управления на k -ом шаге является логическая переменная, которая может принимать одно из двух значений: сохранить (С ) или заменить (З ) оборудование в начале k -го года:

Функцию Беллмана F k (t ) определяют как максимально возможный доход от эксплуатации оборудования за годы с k -го по n -ый, если к началу k -го возраст оборудования составлял t лет. Применяя то или иное управление, система переходит в новое состояние. Так, например, если в начале k -го года оборудование сохраняется, то к началу (k + 1)-го года его возраст увеличится на единицу (состояние системы станет t + 1), в случае замены старого оборудования новое достигнет к началу (k + 1)-го года возраста t = 1 год.

На этой основе можно записать уравнение, которое позволяет рекуррентно вычислить функции Беллмана, опираясь на результаты предыдущего шага. Для каждого варианта управления доход определяется как сумма двух слагаемых: непосредственного результата управления и его последствий.

Если в начале каждого года сохраняется оборудование, возраст которого t лет, то доход за этот год составит r (t ). К началу (k + 1)-го года возраст оборудования достигнет (t + 1) и максимально возможный доход за оставшиеся годы (с (k + 1)-го по n -й) составит F k +1 (t + 1). Если в начале k -го года принято решение о замене оборудования, то продается старое оборудование возраста t лет по цене S (t ), приобретается новое за P единиц, а эксплуатация его в течение k -го года нового оборудования принесет прибыль r (0). К началу следующего года возраст оборудования составит 1 год и за все оставшиеся годы с (k + 1)-го по n -й максимально возможный доход будет F k +1 (1). Из двух возможных вариантов управления выбирается тот, который приносит максимальный доход. Таким образом, уравнение Беллмана на каждом шаге управления имеет вид:

Функция F k (t ) вычисляется на каждом шаге управления для всех 1 ≤ t t 0 + k - 1. Управление при котором достигается максимум дохода, является оптимальным.

Для первого шага условной оптимизации при k = n функция представляет собой доход за последний n -ый год:

(19.7)

Значения функции F n (t ), определяемые F n-1 (t ), F n-2 (t ) вплоть до F 1 (t ).

F 1 (t 0) представляют собой возможные доходы за все годы. Максимум дохода достигается при некотором управлении, применяя которое на первом году, мы определяем возраст оборудования к началу второго года.

Для данного возраста оборудования выбирается управление, при котором достигается максимум дохода за годы со второго по n -й и так далее. В результате на этапе безусловной оптимизации определяются годы, в начале которых следует произвести замену оборудования.

Пример 2. Найти оптимальную стратегию эксплуатации оборудования на период продолжительностью 6 лет, если годовой доход r (t ) и остаточная стоимость S (t ) в зависимости от возраста заданы в табл. 19.6, стоимость нового оборудования равна P = 13, а возраст оборудования к началу эксплуатационного периода составляет 1 год.

Таблица 19.6

t
r(t)
S(t)

I этап. Условная оптимизация.

1-й шаг: k = 6. Для него возможные состояния системы t = 1, 2, …, 6.

Функциональное уравнение имеет вид (19.7):

2-й шаг: k = 5. Для него шага возможные состояния системы t = 1, 2, …, 5.

Функциональное уравнение имеет вид:

3-й шаг: k = 4.

4-й шаг: k = 3.

5-й шаг: k = 2.

6-й шаг: k = 1.

Результаты вычислений Беллмана F k (t ) приведены в табл. 19.7, в которой k – год эксплуатации, t – возраст оборудования.

Таблица 19.7

k t

В табл. 19.7 выделено значение функции, соответствующее состоянию «З» – замена оборудования.

II этап. Безусловная оптимизация.

Безусловная оптимизация начинается с шага при k = 1. Максимально возможный доход от эксплуатации оборудования за годы с 1-го по 6-й составляет F 1 (1) = 37. Этот оптимальный выигрыш достигается, если на первом году не производить замены оборудования. Тогда к началу второго года возраст оборудования увеличится на единицу и составит: t 2 = t 1 + 1 = 2. Безусловное оптимальное управление при k = 2, х 2 (2) = С , т.е. максимум дохода за годы со 2-го по 6-й достигается, если оборудование не заменяется. К началу третьего года возраст оборудования увеличится на единицу и составит: t 3 = t 2 + 1 = 2. Безусловное оптимальное управление х 3 (3) = 3, т. е. для получения максимума прибыли за оставшиеся годы необходимо произвести замену оборудования. К началу четвертого года при k = 4 возраст оборудования станет равен t 4 = 1. Безусловное оптимальное управление х 4 (1) = С . Далее соответственно.

Замена оборудования – важная экономическая проблема. Задача состоит в определении оптимальных сроков замены старого оборудования (станков, производственных зданий и т.п.). Старение оборудования включает его физический и моральный износ, в результате чего растут производственные затраты, затраты на ремонт и обслуживание, снижаются производительность труда, ликвидная стоимость. Критерием оптимальности являются, как правило, либо прибыль от эксплуатации оборудования (задача максимизации), либо суммарные затраты на эксплуатацию в течение планируемого периода (задача минимизации).

Основная характеристика оборудования – параметр состояния – его возраст t.

При составлении динамической модели замены процесс замены рассматривают как "-шаговый, разбивая весь период эксплуатации на п шагов. Возможное управление на каждом шаге характеризуется качественными признаками, например X е (сохранить оборудование), X" (заменить) и Хр (сделать ремонт).

Рассмотрим конкретный пример.

11.3. Оборудование эксплуатируется в течение 5 лет, после этого продается. В начале каждого года можно принять решение – сохранить оборудование или заменить его новым. Стоимость нового оборудования р 0 = 4000 руб . После t лет эксплуатации (1 < t < 5) оборудование можно продать за g(t) = р 0 T" руб. (ликвидная стоимость). Затраты на содержание в течение года зависят от возраста t оборудования и равны r(i) = 600(i + l). Определить оптимальную стратегию эксплуатации оборудования, чтобы суммарные затраты с учетом начальной покупки и заключительной продажи были минимальны.

Решение. Способ деления управления на шаги, естественный, по годам, п = 5. Параметр состояния – возраст машины – s k_ t =t, s Q= 0 – машина новая в начале 1-го года эксплуатации. Управление на каждом шаге зависит от двух переменных X е и Х

Уравнения состояний зависят от управления:

(11.22)

В самом деле, если к /г-му шагу s k_ { =t, то при сохранении машины к = X е) через год возраст машины увеличится на 1. Если машина заменяется новой к = Х"), то это означает, что к началу ⅞-ro шага ее возраст t = 0, а после года эксплуатации ¢=1, т.е. s k = 1.

Показатель эффективности ⅛-го шага:

(11.23)

При X е затраты только на эксплуатацию машины возраста i, при X 1 машина продается (-4000-2"" J, покупается новая (4000) и эксплуатируется в течение первого года (600), общие затраты равны (-4000 ∙ 2"" + 4000 + 600).

Пусть– условные оптимальные затраты на экс

плуатацию машины начиная с А-го шага до конца при условии, что к началу А-го шага машина имеет возраст t лет. Запишем для функцийуравнения Веллмана (11.5) и (11.8), заменив задачу максимизации на задачу минимизации:

(11.24)

Величина– стоимость машины возраста

t лет (по условию машина после 5 лет эксплуатации продается).

(11.25)

Из определения функцийследует

Дадим геометрическое решение этой задачи. Па оси абсцисс будем откладывать номер шага А, на оси ординат – возраст t машины. Точка (А – 1, ί) на плоскости соответствует началу А-го года эксплуатации машины возраста t лет. Перемещение па графике в зависимости от принятого управления на А-м шаге показано на рис. 11.7.

Состояние начала эксплуатации машины соответствует точке , конец – точкам s(6; t). Любая траектория, переводящая точкуизв, состоит из отрезков-шагов, соответствующих годам эксплуатации. Надо выбрать такую траекторию, при которой затраты на эксплуатацию машины окажутся минимальными.

Рис. 11.7

Над каждым отрезком, соединяющим точки -1; /) и [к, ¢ + 1), запишем соответствующие управлению Xе затраты, найденные из (11.23): 600(ί + ΐ), а над отрезком, соединяющим точки (k- ; ¢) и [к; г), запишем затраты, соответствующие управлению X 3, т.е. 4600-4000 2_ί. Таким образом мы разметим все отрезки, соединяющие точки на графике, соответствующие переходам из любого состояния s k_ i в состояние s k (рис. 11.8). Например, над отрезками, соединяющими точки (к; 2) и (/г+1; 3), стоит число 1800 , что соответствует затратам на эксплуатацию в течение каждого года машины возраста t = 2 года, а над отрезками, соединяющими (к, 2) и (£+1; 1), стоит число 3600 – это сумма затрат на покупку машины и эксплуатацию новой машины в течение года без "затрат" (выручки) за проданную машину возраста t лет. Следует учесть, что 0 < t < к.

Проведем на размеченном графе состояний (см. рис. 11.8) условную оптимизацию.

V шаг. Начальные состояния – точки (4; ¢), конечные – (5; ¢). В состояниях (5; ¢) машина продается, условный оптимальный доход от продажи равен 4000 2_ί, но поскольку целевая функция связана с затратами, то в кружках точек (5; ¢) поставим величину дохода со знаком минус.

Анализируем, как можно попасть из каждого начального состояния в конечное на V шаге.

Состояние (4; 1). Из него можно попасть в состояние (5; 2), затратив на эксплуатацию машины 1200 и выручив затем от продажи 1000, т.е. суммарные затраты равны 200, и в состояние (5; 1) с затратами 2600 – 2000 = 600. Значит, если к последнему шагу система находилась в точке (4; 1), то следует идти в точку (5; 2) (укажем это направление двойной стрелкой), а неизбежные минимальные затраты, соответствующие этому переходу, равны 200 (поместим эту величину Zg (1) = 200 в кружке точки (4; 1)).

Состояние (4; 2). Из него можно попасть в точку (5; 3) с затратами 1800 – 500 = 1300 и в точку (5; 1) с затратами 3600 – 2000 = 1600. Выбираем первое управление, отмечаем его двойной стрелкой, a Zg(2) = 1300 проставляем в кружке точки (4; 2).

Рассуждая таким же образом для каждой точки предпоследнею шага, мы найдем для любого исхода IV шага оптимальное управление на V шаге, отметим его на рис. 11.8 двойной

Рис. 11.8

стрелкой. Далее планируем IV шаг, анализируя каждое состояние, в котором может оказаться система в конце III шага с учетом оптимального продолжения до конца процесса, т.е. решаем для всех 0 < t < 4 при k = 4 уравнения (11.22). Например, если начало IV шага соответствует состоянию (3; 1), то при управлении X е система переходит в точку (4; 2), затраты на этом шаге 1200, а суммарные затраты за два последних шага равны 1200 + 1300 = 2500. При управлении X" затраты за два шага равны 2600 + 200 = 2800. Выбираем минимальные затраты 2500, ставим их в кружок точки (3; 1) а соответствующие управления на этом шаге помечаем двойной стрелкой, ведущей из состояния (3; 1), в состояние (4; 2). Так поступаем для каждого состояния (3; t) (см. рис. 11.8).

Продолжая условную оптимизацию III, II и I шагов, мы получим на рис. 11.8 такую ситуацию: из каждой точки (состояния) выходит стрелка, указывающая, куда следует перемещаться в данном шаге, если система оказалась в этой точке, а в кружках записаны минимальные затраты на переход из этой точки в конечное состояние. На каждом шаге графически решались уравнения (11.22).

После проведения условной оптимизации получим в точке (0; 0) минимальные затраты на эксплуатацию машины в течение 5 лет с последующей продажей: Zmin =11900. Далее строим оптимальную траекторию, перемещаясь из точки s0(0; 0) по двойным стрелкам в.?. Получаем набор точек:

{(0; 0),(1;1), (2; 2),(3:1), (4; 2), (5; 3)},

который соответствует оптимальному управлению Х*(ХС, Xе, Х X е, X е). Оптимальный режим эксплуатации состоит в том, чтобы заменить машину новой в начале 3-го года.

Таким образом, размеченный график (сеть) позволяет наглядно интерпретировать расчетную схему и решить задачу методом ДП.

Как уже отмечалось, модели и вычислительная схема ДП очень гибки в смысле возможностей включения в модель различных модификаций задачи. Например, аналогичная задача может быть рассмотрена для большого числа вариантов управления, "ремонт", "капитальный ремонт" и т.д. Можно рассматривать замену оборудования новым с учетом технического прогресса, можно учесть изменения в затратах на эксплуатацию оборудования после его ремонта, в зависимости от года эксплуатации (дороже, дешевле). Все эти факторы можно учитывать вычислительной схемой ДП.

  • Все цены условные.
  • Напоминаем, что псе затраты выражены в условных рублях.


Понравилась статья? Поделитесь с друзьями!