Способы электрического нагрева. Способ преобразования электрической энергии в тепловуюи создания теплообмена

Огромное количество электронных устройств поглощает электрическую энергию, которую надо постоянно возобновлять. Находясь в пути, приходится возить с собой химические источники тока или вырабатывать электричество из механической энергии с помощью сложных и громоздких приспособлений.

Вид термоэлектрического генератора

Ещё раньше Зеебек обнаружил возникновение термо-ЭДС в цепи из разнородных проводников при поддерживании разной температуры в месте контакта. На основании термоэлектрических эффектов был создан так называемый элемент или модуль «Пельтье», представляющий собой 2 керамические пластины с расположенным между ними биметаллом. При подаче через них электрического тока, одна сторона пластины нагревается, а другая охлаждается, что позволяет создавать из них холодильники. На рисунке ниже изображены модули разных размеров, применяемые в технике.

Модули «Пельтье» разных размеров

Процесс является обратимым: если поддерживать температурный перепад на элементах с обеих сторон, в них будет вырабатываться электрический ток, что позволяет использовать устройство как термоэлектрический генератор для выработки небольшого количества электроэнергии.

Эффект «Пельтье» заключается в выделении тепла в месте контакта разнородных проводников при протекании по ним электрического тока.

Принцип действия модулей

На контакте разнородных проводников происходит выделение или поглощение тепла в зависимости от направления электрического тока. Поток электронов обладает потенциальной и кинетической энергией. Плотность тока в контактирующих проводниках одинакова, а плотности потоков энергии отличаются.

Если энергия, втекающая в контакт, больше энергии, вытекающей из него, это означает, что электроны тормозятся в месте перехода из одной области в другую и разогревают кристаллическую решётку (электрическое поле тормозит их движение). Когда направление тока меняется, происходит обратный процесс ускорения электронов, когда энергия у кристаллической решётки забирается и происходит её охлаждение (направления электрического поля и движения электронов совпадают).

Энергетическая разность зарядов на границе полупроводников самая высокая и в них эффект проявляется наиболее сильно.

Модуль «Пельтье»

Больше всего распространён термоэлектрический модуль (ТЭМ), представляющий собой полупроводники p-, и n-типов, соединённые между собой через медные проводники.

Схема принципа работы модуля

В одном элементе существует 4 перехода между металлом и полупроводниками. При замкнутой цепи поток электронов перемещается от отрицательного полюса АКБ к положительному, последовательно проходя через каждый переход.

Вблизи первого перехода медь – полупроводник p-типа происходит тепловыделение в полупроводниковой зоне, поскольку электроны переходят в состояние с меньшей энергией.

Вблизи следующей границы с металлом в полупроводнике происходит поглощение теплоты, в связи с «высасыванием» электронов из зоны р-проводимости под действием электрического поля.

На третьем переходе электроны попадают в полупроводник типа n, где они обладают большей энергией, чем в металле. При этом происходит поглощение энергии и охлаждение полупроводника около границы перехода.

Последний переход сопровождается обратным процессом тепловыделения в n-полупроводнике из-за перехода электронов в зону с меньшей энергией.

Поскольку нагревающиеся и охлаждающиеся переходы находятся в разных плоскостях, элемент «Пельтье» сверху будет охлаждаться, а снизу нагреваться.

На практике каждый элемент содержит большое количество нагревающихся и охлаждающихся переходов, что приводит к образованию ощутимого температурного перепада, позволяющего создать термоэлектрогенератор.

Как выглядит структура модуля

Элемент «Пельтье» содержит большое количество полупроводниковых параллелепипедов p-, и n-типов, последовательно соединённых между собой перемычками из металла – термоконтактов, другой стороной соприкасающихся с керамической пластиной.

В качестве полупроводников применяется теллурид висмута и германид кремния.

Достоинства и недостатки ТЭМ

К преимуществам термоэлектрического модуля (ТЭМ) относят:

  • малые размеры;
  • возможность работы, как охладителей, так и нагревателей;
  • обратимость процесса при смене полярности, позволяющая поддерживать точное значение температуры;
  • отсутствие подвижных элементов, которые обычно изнашиваются.

Недостатки модулей:

  • малый КПД (2-3%);
  • необходимость создания источника, обеспечивающего температурный перепад;
  • значительное потребление электроэнергии;
  • высокая стоимость.

Несмотря на недостатки, ТЭМ применяются там, где большие энергозатраты не имеют значения:

  • охлаждение чипов, деталей цифровых фотокамер, диодных лазеров, кварцевых генераторов, инфракрасных детекторов;
  • использование каскадов ТЭМ, позволяющих добиться низкой температуры;
  • создание компактных холодильников, например, для автомобилей;
  • термоэлектрогенератор для зарядки мобильных устройств.

При малой производительности ТЭГ целесообразно применять в походных условиях, где требуется получить электричество для зарядки сотового телефона или светодиодной лампочки. Простота конструкции позволяет изготовить электрогенератор своими руками.

Альтернативными источниками также являются солнечные батареи или ветрогенератор . Для первых требуются особые условия – наличие солнечного освещения, которое может быть не всегда. Другой источник имеет большие габариты и для него необходим ветер. Ещё одним недостатком у них является наличие подвижных частей, снижающих надёжность и имеющих большой вес.

Термогенераторы промышленного изготовления

Компания BioLite разработала новую модель для походов, позволяющую готовить пищу в компактной переносной печке на дровах и одновременно заряжать мобильное устройство от встроенного ТЭГ.

Компактная переносная печка на дровах

Устройство пригодится везде: на рыбалке, в походе, на даче. В качестве топлива можно применять всё, что горит.

При сгорании в топке топлива тепло передаётся через стенку модулю, который вырабатывает электричество. При напряжении 5В, мощность на выходе составляет 2-4 Вт, чего вполне хватает для зарядки многих типов мобильных устройств и работы освещения на светодиодах. Красной стрелкой изображено направление движения тепла, синей – холодного воздуха в топку, жёлтыми – подача электричества на вращение вентилятора подсоса воздуха и на выход генератора через USB.

Схема работы ТЭГ компании BioLite на дровах

Печь-генератор «Индигирка», разработанная петербургским предприятием Криотерм, имеет характеристики:

  • тепловая мощность – 6 кВт;
  • вес – 56 кг;
  • габариты – 500х530х650 мм;
  • эл. мощность при напряжении 5В – 60 Вт.

Печь является обычной отопительно-варочной, где с двух сторон закреплены термоэлектрогенераторы.

Как выглядит печь-термоэлектрогенератор «Индигирка»

Устройство довольно удобное, но впечатляет цена – 50 тыс. руб. Хоть печь, и предназначена для походных условий, но рядовым охотникам и рыболовам она будет явно не по карману. Как отопительная, она ничем не лучше обычных и более дешёвых моделей.

Если пристроить ТЭГ к простой печи, устройство, изготовленное своими руками, будет работать отлично.

ТЭГ своими руками

Чтобы термоэлектрический генератор собрать своими руками, необходимы следующие элементы:

  1. Модуль. Для генерирования электрического тока можно применять не все модули, а только те, которые способны выдержать нагрев до 300-400 0 С. Наличие запаса по нагреву необходимо, поскольку даже при незначительном перегреве элемент выходит из строя. Наиболее распространены модели типа ТЕС1-12712 в виде квадратных пластин с размером стороны 40, 50 или 60 мм.

Если взять максимальный размер, достаточно в конструкции, сделанной своими руками, применить один элемент. Первые 3 цифры маркировки – 127 означают, сколько элементов содержится в 1 пластине. Последние цифры показывают величину максимально допустимого тока, который составляет 12 А.

  1. Повышающий преобразователь. Он необходим для получения постоянного напряжения 5В. Генератор может выдавать меньшее напряжение, которое необходимо увеличить. Устройства выпускают зарубежные (типы 5V NCP1402 и MAX 756) и отечественные (3.3В/5В ЕК-1674). Для зарядки мобильника следует подобрать устройство с USB разъёмом.
  2. Нагреватель. Простейшими вариантами являются костёр, свеча, самодельная лампа или миниатюрная печка.
  3. Охладитель. Проще всего применять воду или в зимнее время – снег.
  4. Соединительные элементы. Необходимо оборудование для создания максимально возможного температурного перепада между двумя сторонами пластины. Здесь выбор за умельцами, они чаще всего применяют 2 кружки или кастрюли разных размеров, у которых отпиливаются ручки и где одна вставляется внутрь другой. Между ними помещается модуль и крепится на термопасту. К нему припаиваются 2 провода и подключаются к преобразователю напряжения.

Для повышения КПД генератора, днища металлических поверхностей кружек или кастрюль, контактирующие с пластиной генератора, следует отполировать. Кроме того, на места между донышками меньшей и большой кружек наносится термостойкий герметик. Тогда тепло от нагрева будет локализовано в месте нахождения модуля.

Провода между модулем и преобразователем защищаются термостойкой изоляцией и герметиком.

Во внутреннюю кружку наливается вода, и вся конструкция ставится на огонь. Через несколько минут можно проверить выходное напряжение мультиметром.

Для того чтобы собрать термоэлектрический генератор самостоятельно, понадобятся материалы:

  1. элемент «Пельтье»;
  2. корпус от старого блока питания компьютера для изготовления мини-топки;
  3. преобразователь напряжения с USB выходом на 5В при входном 1-5 В;
  4. радиатор с кулером от процессора;
  5. термопаста.

Затраты здесь небольшие и устройство вполне способно зарядить мобильный телефон. Генератор, собранный своими руками, является аналогом зарубежной модели фирмы BioLite. Если его собрать аккуратно, устройство будет надёжно работать долгое время, поскольку ломаться здесь нечему. Важно только не перегреть элемент «Пельтье», отчего он может выйти из строя.

При использовании куллера для охлаждения радиатора его следует подключить к генератору, после чего часть вырабатываемой энергии будет расходоваться на охлаждение.

Несмотря на дополнительные энергозатраты, КПД установки возрастёт. Если радиатор будет сильно нагреваться в процессе работы, необходимо принять меры по его охлаждению. Иначе эффективность работы генератора будет низкой.

Характеристики генератора следующие:

  • выходное напряжение – 5В;
  • мощность нагрузки – 0,5А;
  • тип выхода – USB;
  • топливо – любое.

Устройство изготавливается следующим образом:

  • разобрать блок питания, оставив корпус;
  • приклеить термопастой модуль «Пельтье» к радиатору. Клеить надо холодной стороной, где нанесена маркировка;
  • зачистить и отполировать наружную боковую поверхность корпуса блока питания и приклеить к ней элемент другой стороной (вместе с радиатором);
  • припаять провода от входа преобразователя напряжения к выводам пластины.

Проверить ТЭГ можно, если наложить внутрь топки тонких веточек и поджечь их. Через несколько минут можно подключать телефон, для подзарядки которого требуется разница температуры сторон модуля 100 0 С. На рисунке ниже изображён генератор в сборке.

Термоэлектрогенератор в сборке, изготовленный своими руками

При использовании ТЭГ необходимо соблюдать полярность подключения модулей.

Видео. Термоэлектрический генератор

Эффект «Пельтье» позволяет создать небольшие генераторы и холодильники, работающие без подвижных частей. Повышение качества модулей и снижение энергопотребления мобильных устройств позволяет создать своими руками термоэлектрогенератор для зарядки аккумуляторов и снабжения небольшим количеством энергией различные устройства, где КПД не имеет особого значения.

Как известно, все тела состоят из молекул, и эти молекулы не находятся в покое, а непрерывно движутся. Чем выше температура тела, тем быстрее движение молекул вещества этого тела. При прохождении электрического тока по проводнику электроны сталкиваются с двигающимися молекулами проводника и усиливают их движение, что приводит к нагреву проводника.

Повышение температуры проводника происходит в результате преобразования электрической энергии в тепловую. Ранее (см. § 13) было получено выражение для работы электрического тока (электрической энергии)

А = I 2 rt джоулей.

Эта зависимость была первоначально (в 1841 г.) установлена результате опытов английским физиком Джоулем и несколько позднее (в 1844 г.) независимо от него русским академиком Ленцем.

Для того чтобы количество полученной тепловой энергии было выражено в калориях, необходимо дополнительно ввести множитель 0,24, так как 1 дж = 0,24 кал. Тогда Q = 0,24I 2 rt. Это уравнение выражает закон Джоуля-Ленца.

Эмилий Христианович Ленц (1804-1865) установил законы теплового действия тока, обобщил опыты по электромагнитной индукции, изложив это обобщение в виде "правила Ленца". В своих трудах по теории электрических машин Ленц описал явление "реакции якоря" в машинах постоянного тока, доказал принцип обратимости электрических машин. Ленц, работая с Якоби, исследовал силу притяжения электромагнитов, установил зависимость магнитного момента от намагничивающей силы.

Таким образом, количество тепла, выделенного током при прохождении по проводнику, зависит от сопротивления r самого проводника, квадрата тока I 2 и длительности его прохождения t.

Пример 1 . Определить, сколько тепла выделит ток в 6 а, проходя по проводнику сопротивлением 2 ом в течение 3 мин.

Q = I 2 rt = 36 ⋅ 2 ⋅ 180 = 12960 дж.

Формулу закона Джоуля-Ленца можно написать так.


Преобразование электрической энергии в тепловую пли электронагрев имеет четыре основные разновидности, по которым классифицируются промышленные электропечи; 1) электронагрев через сопротивление; 2) дуговой электронагрев; 3) смешанный электронагрев; 4) индукционный нагрев.
Электронагрев металлургических печей имеет существенные преимущества по сравнению с нагревом в результате сжигания углеродистого топлива: возможность получения весьма высоких температур до 3000° и более при концентрации зон высоких температур в определенных участках рабочего пространства печей; легкость и плавность регулирования величины и распределения температуры в рабочем пространстве; чистота рабочего пространства и возможность избежать загрязнения его золой, серой, газами и различными примесями: низкие потерн металлов со шлаками, пылью, газами и вследствие угара; высокий термический к. п. д., достигающий 70-85%; малое количество газов и пыли; возможность комплексной механизации и автоматизации; культура и чистота рабочих мест; возможность применять любую газовую среду и вакуум.
К недостаткам электронагрева относятся: высокое потребление электроэнергии, значительно превосходящее потребление в других отраслях народного хозяйства, и конструктивное ограничение производительности и мощности для некоторых типов электропечей. в дальнейшем в связи с увеличением мощности и числа электростанций, снижением стоимости электроэнергии и увеличением мощности и производительности электропечей перечисленные недостатки утратят свое значение.
Общая активная, или ваттная мощность трехфазной электропечной установки Р определяется по формуле

Электронагрев через сопротивление


Этот тип электронагрева имеет несколько разновидностей. По способу выделения тепла различают косвенный и прямой нагрев; наибольшее значение и распространение в печной технике имеет косвенный нагрев, характеризующийся тем, что тепло выделяется в специальных нагревательных элементах (сопротивлениях) и передается от них к обрабатываемому материалу теплоотдачей. По температуре рабочего пространства печей различают нагрев; низкотемпературный в интервале 100-700°, среднетемпературный 700-1200° и высокотемпературный 1200-2000°.
При низкотемпературном нагреве весьма большое значение имеет теплообмен между нагревателем и материалом конвекцией, которая всемерно интенсифицируется принудительной циркуляцией с большими скоростями газа или воздуха внутри печен. При среднетемпературном и высокотемпературном нагреве, особенно при отсутствии принудительной циркуляции газов, основное количество тепла передается от нагревателей к обрабатываемым материалам излучением. Для электрических печей сопротивления высокотемпературный нагрев имеет лишь ограниченное значение.
Электронагрев сопротивлением нашел наибольшее применение для сушки и обжига материалов, нагрева и термической обработки металлов и сплавов, плавки легкоплавких металлов - олова, свинца, цинка, алюминия, магния и их сплавов, а также для лабораторных и бытовых нужд. Поскольку, однако, при косвенном нагреве размер нагревательных элементов увеличивается, а размещение их в рабочем пространстве печи оказывается затруднительным, верхний предел мощности электрических печей сопротивления ограничивают величиной 600-2000 квт.
Для нормального протекания процесса преобразования электрической энергии в тепловую и длительной устойчивой работы нагревательные элементы должны обладать следующими качествами: большим удельным электрическим сопротивлением, допускающим достаточное поперечное сечение элементов и ограниченную их длину; малым электрическим температурным коэффициентом, ограничивающим разницу в электрическом сопротивлении нагретого и холодного нагревателя, постоянством электрических свойств во времени; жаростойкостью и неокисляемостью; жаропрочностью, т. е. достаточной механической прочностью при высоких температурах; постоянством линейных размеров; хорошей обрабатываемостью материала (свариваемость, пластичность и др.). Этим требованиям наиболее удовлетворяют сплавы никеля, хрома, железа (нихром, фехраль и жаропрочная сталь), применяемые в электропечах сопротивления в виде проволоки или ленты, и углеродистые материалы, применяемые в виде угольных, графитовых или карборундовых стержней.
Определение размеров нагревательных элементов можно научно обосновать совместным решением двух основных уравнений, описывающих существо работы нагревателей - уравнения мощности и уравнения теплообмена. Поскольку нагревательный элемент является составной частью электрической цели, то для получения необходимой мощности он должен обладать определенными размерами и сопротивлением. С другой стороны, вся тепловая энергия, полученная в нагревательном элементе в результате преобразования электроэнергии, должна быть передана теплоотдачей к перерабатываемым материалам и футеровке печи, для чего необходимо иметь определенную поверхность, температуру и коэффициент теплоотдачи. Если теплоотдача нагревательного элемента не соответствует происходящему в нем тепловыделению - элемент будет перегреваться, а его температура может превысить допустимые для материала пределы, что приведет к разрушению нагревателя.
На основании решения уравнения мощности для нагревательных элементов любой формы и материала выведена общая формула

При расчете размеров нагревателя величина w должна точно соответствовать его удельной теплоотдаче, которую находят решением соответствующего уравнения теплообмена нагревателя, кладки и материала А.Д. Свенчанский проанализировал условия теплоотдачи для различных реальных нагревателей и составил графики и таблицы, с помощью которых можно находить величину w.

Дуговой электронагрев


Этот вид электронагрева применяется в высокотемпературных электрических печах большой мощности преимущественно для плавки различных материалов. Если дуга горит между электродом и перерабатываемым в печи материалом, то такие печи называются печами прямого действия с зависимой дугой: открытой - видимой (рис. 20, а) или закрытой - невидимой дугой, погруженной в слой шихты или расплава (рис. 20, б). Если дуга горит между электродами и непосредственно не соприкасается с перерабатываемыми в печи материалами и продуктами, то такие печи называются печами косвенного действия с независимой дугой (рис. 20, в). Наибольшим термическим к. п. д. обладают дуговые печи прямого действия, особенно с закрытой дугой, поскольку в них имеются наилучшие условия для теплообмена между дугой и материалом, позволяющие быстро и с ограниченными потерями тепла нагревать материал до весьма высокой температуры.

Дуговые печи прямого действия получили наибольшее применение для выплавки стали и ферросплавов, плавки и рафинирования меди и никеля и переработки различного рудного сырья. При плавке металлов или сплавов с высокой (металлической) электропровадностью можно работать только с открытой дугой, горящей на поверхности материала, так как погружение электродов в слой материала поведет к короткому замыканию. Работа с закрытой дугой возможна, когда перерабатываемые материалы и продукты имеют ограниченную (не металлическую) электропроводность. Дуговые печи непрямого действия применяются в тех случаях, когда соприкосновение перерабатываемого материала с дугой ухудшает качество продуктов или увеличивает потери, например при плавке некоторых цветных металлов и сплавов (латунь, бронза и др.). Следует особо подчеркнуть, что дуговой электронагрев в отличие от нагрева сопротивлением не имеет каких-либо ограничений по общей мощности печей.
Дуговой электронагрев слагается из процесса преобразования электроэнергии в тепловую, протекающего в горящей дуге, и процесса теплообмена между дугой, материалом и футеровкой. Описание закономерностей первого процесса является предметом так называемой теории дуги и особенно дуги переменного тока большой мощности. Значительный вклад в разработку теории дуги внесли В.В. Петров, В.Ф. Миткевич, С.И. Тельный, И.Т. Жердев, К.К. Хренов, Г.А. Сисоян и др. Вопросами теплообмена между дугой, материалом и футеровкой занимались Д.А. Диомидовский, Н.В. Окороков и др.
Электрическая дуга может быть получена при постоянном и переменном токе, но все промышленные печи работают обычно на переменном токе. Для устойчивого горения дуги и ограничения толчков тока при коротких замыканиях последовательно с ней в электрическую цепь включается индуктивное сопротивление, поглощающее небольшую долю активной мощности. При переменном токе в течение каждого полупериода напряжение сети и сила тока достигают максимума и проходят через нуль. На рис. 21, а показаны теоретические кривые мгновенного значения силы тока и напряжения дуги Iд и Uд и напряжения питающего источника Uист. Когда напряжение источника после перехода через нуль начинает расти, дуга зажигается только при достижении величины напряжения зажигания U1. С этого момента в цепи появляется ток, возрастающий по периодической кривой, отличной От синусоиды. Дуга затухает при напряжении затухания т. е. раньше перехода через нуль напряжения источника, и в этот момент прекращается ток. После перехода через нуль все описанные явления повторяются. Таким образом, ток в дуге идет прерывисто и дуга то зажигается, то погасает. Длительность перерывов в горении дуги зависит от многих факторов и, в частности, от материала электродов, степени разогрева печного пространства и др. Понятно, что прерывистая дуга снижает эффективность дугового нагрева и поэтому должны создаваться условия, обеспечивающие непрерывное горение дуги переменного тока. Основным средством для непрерывного горения дуги переменного тока является последовательное включение в цепь дуги индуктивного сопротивления, что видно из рис. 21, б и в.
Исследование дифференциального уравнения дуги переменного тока, имеющей в цепи активное и индуктивное сопротивления, определило соотношение величин индуктивного X и активного R сопротивлений, обеспечивающее непрерывное горение дуги при заданных напряжениях источника Uист и дуги Uд (рис. 22).

Эффективность дугового нагрева в весьма большой степени зависит от электрического режима горящей дуги и, в первую очередь, от величин напряжения и силы тока.
В настоящее время еще не создана научно обоснованная методика определения наивыгоднейшего напряжения для питания дуговых печей. Поэтому напряжение выбирают по данным заводской практики в пределах от 100 до 600 в, причем более высокое напряжение обычно принимается для дуговых печей большой мощности и для печей с закрытой дугой. Связь максимального рабочего напряжения Uлин и номинальной мощности печи Рном принято выражать эмпирической формулой

где k и n - эмпирические коэффициенты, имеющие различные значения в зависимости от типа печи и характера процесса. Например для дуговых сталеплавильных печей к = 15; n = 0,33. Работа на повышенном напряжении более рациональна, так как снижает потери электроэнергии и увеличивает длину и тепловое излучение дуги. Верхний предел напряжения (600 в) обусловлен в основном условиями электрической изоляции печи и безопасности обслуживающего персонала.
После определения величины напряжения выбор других показателей электрического режима электропечной установки с дуговым нагревом - оптимальной силы тока, cos φ и к. п. д. - производится по ее рабочим характеристикам. Рабочие характеристики дуговых печей нaxодят построением круговых диаграмм: для действующих заводских печей снимают с натуры, для вновь проектируемых печей - по расчетным данным.
Для теории дугового нагрева и расчета дуговых печей весьма большое значение имеет процесс теплообмена между горящей дугой и перерабатываемыми в печи материалами. Однако теория теплообмена в рабочем пространстве дуговых печей находится еще в начальной стадии своего развития и требует дальнейшей углубленной разработки.

Смешанный электронагрев


Этот тип нагрева, являющийся результатом совместного тепловыделения в электрической дуге и в сопротивлении слоя шихты или расплавов, имеет основное значение для рудно-термических печей, выплавляющих ферросплавы, чугун и перерабатывающих рудное сырье и полупродукты цветной металлургии и химической промышленности.
в наиболее сложном случае электрический ток, проходящий через дугу и слои шихты, шлака и металла, преобразуется в них в тепловую энергию Qдуги, Qшихты, Qшлака, Q металла, печи Робщ представляет сумму перечисленных тепловыделений. Принципиальная схема расчета всех этих тепловыделений и связь их с геометрией горна рудно-термических печей была в свое время освещена автором но для точного расчета тепловыделений не достает еще очень многих данных по термической характеристике дуги, электросопротивлениям шихты и расплавов, форме и размерам токопроводящих участков и т. п. Соответственно предложенный автором методом расчета руднотермических электропечей носит пока ориентировочный характер и имеет ограниченное применение.
Для цветной металлургии наибольшее значение имеют рудно-термические печи, работающие с электродами, погруженными в толстый слой шлака, в которых происходит смешанный электронагрев, складывающийся из двух основных составляющих: Qдуги и Qшлака.
М.С. Максименко предложил разделять все электротермические процессы на две основные группы; 1) процессы, в которых доля энергии, поглощаемая в дуге р, больше доли энергии, поглощаемой в шихте и расплавах 2) процессы, у которых р

Индукционный электронагрев


Индукционный электронагрев осуществляется по принципу трансформатора, у которого вторичная обмотка замкнута на. себя, в результате чего индуктируемый электрический ток преобразуется в тепловую энергию. Роль вторичной обмотки играет обычно сам нагреваемый материал. Электрическая энергия, подводимая в первичную обмотку (индуктор), совершает сложный переход в энергию быстропеременного магнитного поля, которая, в свою очередь, вновь переходит во вторичной цепи в электрическую энергию, преобразуемую здесь за счет сопротивления цепи в тепловую энергию. Если нагреваемый материал ферромагнитен, те часть энергии переменного магнитного поля преобразуется в тепловую энергию непосредственно, без перехода в электрическую энергию.
Наибольшее распространение в технике имеют два типа индукционных печей: 1) печи с железным сердечником; 2) печи без сердечника - высокочастотные.

Печи с железным сердечником имеют принципиальную схему (рис. 23, а), похожую на схему обычного трансформатора, у которого первичная обмотка насажена на железный сердечник, а вторичная представлена замкнутым кольцом расплавленного металла, т. е. совмещена с нагрузкой. В результате энергичной циркуляции металл, нагреваемый в кольцевом канале, поднимается вверх в рабочее пространство печи и, соприкасаясь с находящейся там шихтой, нагревает и расплавляет ее.
Печи без сердечника по своей схеме представляют воздушный трансформатор (рис. 23, б), первичной обмоткой которого является медная катушка - индуктор, а вторичная-сама металлическая шихта, загруженная в тигель.
Действующее значение индуктируемой электродвижущей силы Е. в, зависит от амплитудной величины полезного магнитного потока Фм, вб, частоты переменного тока f, пер/сек, числа витков обмотки w, и выражается формулой

В печах с железным сердечником величина достаточно большая благодаря концентрации полезного магнитного потока в сердечнике, а в печах без сердечника величина мала из-за большого магнитного рассеивания. Вследствие этого в индукционных печах с железным сердечником необходимая величина электродвижущей силы Е легко достигается на переменном токе с нормальной и пониженной частотой (f Основные преимущества индукционного нагрева следующие: выделение тепла прямо в массе нагреваемого материала, что уменьшает роль теплообменных процессов, обеспечивает более равномерный прогрев материала и значительно повышает термический к. п. д. индукционных печей; исключительная чистота рабочего пространства печей (обусловленная отсутствием загрязняющих его продуктов горения топлива, материалов нагревательных элементов и электродов), позволяющая получать особо чистые металлы и сплавы; возможность полной изоляции рабочего пространства печей от окружающего воздуха и ведения плавки в вакууме или в газовой защитной атмосфере; возможность получения весьма высокой температуры, лимитируемой только свойствами нагреваемого материала и огнеупорной кладки; энергичное перемешивание расплавов электромагнитными и тепловыми потоками, позволяющее получать сплавы равномерного химического состава; высокая удельная производительность индукционных печей; большая скорость нагрева и плавления; малые потери металлов от угара; высокая техническая культура печных агрегатов, отсутствие пыли и газов.
К недостаткам индукционного нагрева относятся: пониженный коэффициент мощности, поскольку для печей с железным сердечником соs φ = 0,3/0,8 и для бессердечниковых печей соs φ = 0,03/0,1; ограниченные размеры, мощность и емкость индукционных печей по сравнению с другими агрегатами; сложность электрического оборудования бессердечниковых печей, требующих специальных источников переменного тока высокой частоты и конденсаторных батарей значительной емкости; ограниченная стойкость футеровки каналов печей с железным сердечником и тиглей бессердечниковых печей: низкая температура нагрева шлаков.
Преимущества индукционного нагрева обусловили его широкое распространение. Индукционные печи с железным сердечником являются в настоящее время основным агрегатом для плавки и литья цветных металлов и производства цветных сплавов. Индукционные печи без сердечника применяются для плавки цветных и благородных металлов и для получения качественных стальных отливок. В металлургии меди, никеля и цинка также применяются индукционные печи, работающие на конечных переделах. Индукционный нагрев широко применяется на машиностроительных заводах при термической обработке различных металлических заготовок и изделий.
Теория индукционных печей с железным сердечником базируется на теории однофазного двухобмоточного трансформатора с железным сердечником. Отличие обычного трансформатора от индукционной печи с железным сердечником заключается в том, что у трансформатора вторичная обмотка и сеть потребления (нагрузка) находятся на значительном расстоянии одна от другой, а в индукционной печи вторичная обмотка совмещена с нагрузкой и представлена кольцом расплавленного металла.
Преобразуемая мощность Рпр может быть выражена через вторичный ток I2 и фактическое активное сопротивление металла в канале r2 формулой

Мощность, теряемая в индукторе (электрические потери) Рэл, выражается через первичный ток I1 и фактическое активное сопротивление обмотки индуктора

Полная активная (ваттная) мощность индукционной печи с железным сердечником Р будет

В теории индукционных печей без железного сердечника эти печи рассматриваются как воздушные трансформаторы, у которых в результате отсутствия замкнутого железного магнитопровода магнитные потоки проходят по перерабатываемой шихте и по воздуху.
Частота питающего индуктор переменного тока f зависит от емкости (мощности) индукционной печи и удельного сопротивления перерабатываемой шихты р2. Исследования показывают, что чем больше емкость печи и ее размеры, в частности диаметр шихты d, см, и чем меньше удельное сопротивление расплавленного металла р2. ом/см3, тем меньше может быть минимальная частота fмин, гц; указанная зависимость выражается формулой

Каждой емкости печи и сопротивлению соответствует определенная оптимальная частота питающего тока, при которой к. п. д. печи достигает возможного максимального значения. Для бессердечниковых печей большой емкости (мощности) оказалось возможным применять пониженную частоту переменного тока, вплоть до нормальной 50 гц.
Активная мощность бессердечниковой печи Ра состоит из мощности, преобразуемой в шихте, и мощности, теряемой в индукторе, и выражается формулой

На основании закономерностей процессов горения топлива и преобразования электрической энергии в тепловую могут решаться следующие наиболее важные задачи по теории, эксплуатации и проектированию металлургических печей:
а) выбор системы нагрева печей (углеродистое топливо или электроэнергия);
б) выбор типа и сорта топлива и системы его сжигания;
в) выбор параметров электроэнергии и системы ее преобразования в тепловую энергию;
г) расчеты процессов горения топлива;
д) выбор и расчет топочных устройств;
е) расчет и конструирование электрических печей.

Добавить сайт в закладки

Как происходит преобразование тепловой энергии в электрическую

Непосредственное преобразование тепловой энергии в электриче­скую можно осуществить, используя явления в контакте двух метал­лов или полупроводников, где действуют сторонние силы, которыми обусловлена диффузия заряженных частиц.

Величина контактной разности потенциалов зависит не только от свойств контактирующих материалов, но и от температуры контакта, так как с температурой связаны энергия свободных электронов и их концентрация.

Рассматривая замкнутую цепь из двух разных металлов (рис. 1а), можно убедиться в том, что при одинаковой темпера­туре контактов 1 и 2 электрический ток в цепи не получится, так как контактные разности потенциалов, определяемые формулой

U k = (A 1 – A 2) : e 0

в обоих контактах одинаковы, но направлены в противоположные сто­роны по цепи:

U k 1 - U k 2 = (A 1 – A 2) + (A 2 - A 1) : e 0 = 0

Если один из контактов, например 1, нагреть (t 1 > t 2), то равнове­сие нарушится - в контакте 1 появится дополнительный скачок потенциала, связанный с нагревом. В этом случае U k1 > U K2 . В цепи образуется термоэлектродвижущая сила (термо-э. д. с.), абсолютное значение которой пропорционально разности температур контактов:

E т = U Kl - U K2 = E 0 (t 1 - t 2),

где Е 0 - величина, зависящая от свойств металлов, образующих контакт.

Рисунок 1 . а) замкнутая цепь из двух разных металлов, б) цепь с измерителем термо-э. д. с.

Таким образом, термо-э. д. с. возникает в цепи, состоящей из раз­ных металлов, при разной температуре мест соединения.

Термо-э. д. с. в рассматриваемой цепи поддерживается благодаря нагреванию спая 1, т. е. при постоянном расходе тепловой энергии. В свою очередь, термо-э. д. с. является причиной электрического тока.

Однако концентрация свободных электронов в металлах велика и при переходе из одного металла в другой меняется очень мало. В связи с этим контактная разность потенциалов оказывается незначитель­ной и мало зависит от температуры. По этой причине металлические термоэлементы имеют очень малые э. д. с. (в спае платины и железа - 1,9 мВ при разности температур горячего и холодного спаев 100° С), а к. п. д. их не превышает 0,5%. Такие термоэлементы применяют для измерения температур (термопары).

Для этого в цепь термопары включается измеритель термо-э. д. с. - милливольтметр (рис. 1, 6). Термопара в этом случае является источником электрической энергии, а измерительный прибор - приемником.

Кроме контакта 1 основных металлов термопары между собой образуются контакты их с соединительными проводами (Рис. 1 - 2, 3). В этих контактах тоже имеются контактные разности потенциалов, но они не изменяют термо-э. д. с., если их температура поддерживается одинаковой.

При наличии произвольного числа контактов разных металлов сумма контактных разностей потенциалов в замкнутой цепи остается равной нулю, если все контакты имеют одинаковую температуру. В этом можно убедиться, составив уравнение, аналогичное вышеприведенному. Независимо от числа контактов, термо-э. д. с. пропорциональна разности температур более нагретого контакта и всех других контактов, находящихся при одинаковой температуре.

Рисунок 2. n,p- полупроводники.

В отличие от металлов, в полупроводниках при увеличении температуры сильно увеличиваются концентрации свободных электронов и дырок. Это свойство полупроводников позволяет получить более высокие термо-э. д. с. (до 1 мВ на 1° С разности температур) и к. п. д. термоэлементов до 7%.

Полупроводниковый термоэлемент состоит из двух полупроводников (п и р на рис. 2). Один из них имеет электронную, а другой дырочную электропроводность. При нагревании полупроводников в месте соединения их металлической пластинкой сильно увеличивается концентрация свободных носителей заряда. Поэтому в полупроводниках возникает диффузия их от горячего конца к холодному. В полупроводнике с электронной электропроводностью к холодному концу перемещаются электроны, в результате чего этот конец заряжается отрицательно. В другом полупроводнике к холодному концу перемещаются дырки, образуя положительный заряд. Возникшая разность потенциалов противодействует диффузии, и при некотором значении ее устанавливается равновесие сил электрического поля и сторонних сил, под действием которых идет процесс диффузии носителей заряда. Эта разность потенциалов и является термо-э. д. с. полупроводникового термоэлемента.

Если к холодным концам полупроводников подключить токопроводящий элемент, например, резистор, то образуется замкнутая цепь и электрический ток в ней.

Основные методы и способы преобразования электрической энергии в тепловую классифицируют следующим образом. Различают прямой и косвенный электрический нагрев.

При прямом электронагреве преобразование электрической энергии в тепловую происходит в результате прохождения электрического тока непосредственно по нагреваемому телу или среде (металл, вода, молоко, почва и т. п.). При косвенном электронагреве электрический ток проходит по специальному нагревательному устройству (нагревательному элементу), от которого тепло передается нагреваемому телу или среде посредством теплопроводности, конвекции или излучения.

Существует несколько видов преобразования электрической энергии в тепловую, которые определяют способы электрического нагрева.

Протекание электрического тока по электропроводящим твердым телам или жидким средам сопровождается выделением тепла. По закону Джоуля - Ленца количество тепла Q=I 2 Rt, где Q - количество, тепла, Дж; I - силатока, А; R - сопротивление тела или среды, Ом; t - время протекания тока, с.

Нагрев сопротивлением может быть осуществлен контактным и электродным способами.

Контактный способ применяется для нагрева металлов как по принципу прямого электрического нагрева, например в аппаратах электроконтактной сварки, так и по принципу косвенного электрического нагрева - в нагревательных элементах.

Электродный способ применяется для нагрева неметаллических проводящих материалов и сред: воды, молока, сочных кормов, почвы и др. Нагреваемый материал или среда помещается между электродами, к которым подводится переменное напряжение.

Электрический, ток, протекая по материалу между электродами, нагревает его. Обычная (недистиллированная) вода проводит электрический ток, так как в ней всегда содержится некоторое количество солей, щелочей или кислот, которые диссоциируют на ионы, являющиеся носителями электрических зарядов, то есть электрического тока. Аналогична природа электропроводности молока и других жидкостей, почвы, сочных кормов и т. п.

Прямой электродный нагрев осуществляется только на переменном токе, так как постоянный ток вызывает электролиз нагреваемого материала и его порчу.

Электронагрев сопротивлением нашел широкое применение в производстве в связи с его простотой, надежностью, универсальностью и невысокой стоимостью нагревательных устройств.

Электродуговой нагрев

В электрической дуге, возникающей между двумя электродами в газообразной среде, происходит превращение электрической энергии в тепловую.

Для зажигания дуги электроды, присоединенные к источнику питания, на мгновение соприкасают, а затем медленно разводят. Сопротивление контакта в момент разведения электродов сильно нагревается проходящим по нему током. Свободные электроны, постоянно движущиеся в металле, с повышением температуры в месте соприкосновения электродов ускоряют свое движение.

С ростом температуры скорость свободных электронов настолько возрастает, что они отрываются от металла электродов и вылетают в воздушное пространство. При движении они сталкиваются с молекулами воздуха и расщепляют их на положительно и отрицательно заряженные ионы. Происходит ионизация воздушного пространства между электродами, которое становится электропроводным.

Под действием напряжения источника положительные ионы устремляются к отрицательному полюсу (катоду), а отрицательные ионы - к положительному полюсу (аноду), тем самым образуя длительный разряд - электрическую дугу, сопровождающуюся выделением тепла. Температура дуги неодинакова в различных ее частях и составляет при металлических электродах: у катода - около 2400 °С, у анода - около 2600 °С, в центре дуги - около 6000 - 7000 °С.

Различают прямой и косвенный электродуговой нагрев. Основное практическое применение находит прямой электродуговой нагрев в дуговых электросварочных установках. В установках косвенного нагрева дуга используется как мощный источник инфракрасных лучей.

Если в переменное магнитное поле поместить кусок металла, то в нем будет индуктироваться переменная э. д. с, под действием которой в металле возникнут вихревые токи. Прохождение этих токов в металле вызовет его нагрев. Такой способ нагрева металла называется индукционным. Устройство некоторых индукционных нагревателей основано на использовании явления поверхностного эффекта и эффекта близости.

Для индукционного нагрева используются токи промышленной (50 Гц) и высокой частоты (8-10 кГц, 70-500 кГц). Наибольшее распространение получил индукционный нагрев металлических тел (деталей, заготовок) в машиностроении и при ремонте техники, а также для закалки металлических деталей. Индукционный способ может использоваться также для нагрева воды, почвы, бетона и пастеризации молока.

Диэлектрический нагрев

Физическая сущность диэлектрического нагрева заключается в следующем. В твердых телах и жидких средах с плохой электрической проводимостью (диэлектриках), помещенных в быстропеременное электрическое поле, электрическая энергия превращается в тепловую.

В любом диэлектрике имеются электрические заряды, связанные межмолекулярными силами. Эти заряды называются связанными в отличие от свободных зарядов в проводниковых материалах. Под действием электрического поля связанные заряды ориентируются или смещаются в направлении поля. Смещение связанных зарядов под действием внешнего электрического поля называется поляризацией.

В переменном электрическом поле происходит непрерывное перемещение зарядов, а следовательно, и связанных с ними межмолекулярными силами молекул. Энергия, затрачиваемая источником на поляризацию молекул непроводниковых материалов, выделяется в виде тепла. В некоторых непроводниковых материалах есть небольшое количество свободных зарядов, которые создают под действием электрического поля незначительный по величине ток проводимости, способствующий выделению дополнительного тепла в материале.

При диэлектрическом нагреве материал, подлежащий нагреванию, помещается между металлическими электродами - обкладками конденсатора, к которым подводится напряжение высокой частоты (0,5 - 20 МГц и выше) от специального высокочастотного генератора. Установка для диэлектрического нагрева состоит из лампового генератора высокой частоты, силового трансформатора и сушильного устройства с электродами.

Высокочастотный диэлектрический нагрев - перспективный способ нагрева и применяется главным образом для сушки и тепловой обработкидревесины, бумаги, продуктов и кормов (сушки зерна, овощей и фруктов), пастеризации и стерилизации молока и т. п.

Электронно-лучевой (электронный) нагрев

При встрече потока электронов (электронного луча), ускоренных в электрическом поле, с нагреваемым телом электрическая энергия превращается в тепловую. Особенностью электронного нагрева является высокая плотность концентрации энергии, составляющая 5х10 8 кВт/см2, что в несколько тысяч раз выше, чем при электродуговом нагреве. Электронный нагрев применяется в промышленности для сварки очень мелких деталей и выплавки сверхчистых металлов.

Кроме рассмотренных способов электронагрева, в производстве и быту находит применение инфракрасный нагрев (облучение).



Понравилась статья? Поделитесь с друзьями!