Сообщение о железе по химии. Взаимодействие с солями менее активных металлов

История

Железо, как инструментальный материал, известно с древнейших времён. Самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это изготовленные из метеоритного железа, то есть сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), украшения из египетских гробниц (около 3800 года до н. э.) и кинжал из шумерского города Ура (около 3100 года до н. э.). От небесного происхождения метеоритного железа происходит, видимо, одно из названий железа в греческом и латинском языках: «сидер» (что значит «звёздный»).

Изделия из железа, полученного выплавкой, известны со времени расселения арийских племён из Европы в Азию, острова Средиземного моря, и далее (конец 4-го и 3-е тысячелетие до н. э. ). Самые древние железные инструменты из известных - стальные лезвия, найденные в каменной кладке пирамиды Хеопса в Египте (построена около 2530 года до н. э. ). Как показали раскопки в Нубийской пустыне, уже в те времена египтяне, стараясь отделить добываемое золото от тяжёлого магнетитового песка, прокаливали руду с отрубями и подобными веществами, содержащими углерод. В результате на поверхности расплава золота всплывал слой тестообразного железа, который обрабатывали отдельно. Из этого железа ковались орудия, в том числе найденные в пирамиде Хеопса. Однако после внука Хеопса Менкаура (2471-2465 год до н. э.) в Египте наступила смута: знать во главе со жрецами бога Ра свергла правящую династию, и началась чехарда узурпаторов, закончившаяся воцарением фараона следующей династии Усеркара, которого жрецы объявили сыном и воплощением самого бога Ра (с тех пор это стало официальным статусом фараонов). В ходе этой смуты культурные и технические знания египтян пришли в упадок, и, так же как деградировало искусство строительства пирамид, технология производства железа была утеряна , вплоть до того, что позднее, осваивая в поисках медной руды Синайский полуостров, египтяне не обратили никакого внимания на имевшиеся там залежи железной руды, а получали железо от соседних хеттов и митаннийцев.

Первые освоили производства железа хатты , на это указывает древнейшее (2-е тысячелетие до н. э.) упоминание железа в текстах хеттов , основавших свою империю на территории хатттов (современной Анатолии в Турции). Так, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

Когда на город Пурусханду в поход я пошел, человек из города Пурусханды ко мне поклониться пришел (…?) и он мне 1 железный трон и 1 железный скипетр (?) в знак покорности (?) преподнес…

(источник: Гиоргадзе Г. Г. // Вестник древней истории. 1965. № 4.)

В древности мастерами железных изделий слыли халибы . В легенде об аргонавтах (их поход в Колхиду состоялся примерно за 50 лет до троянской войны) рассказывается, что царь Колхиды Эет дал Ясону железный плуг чтобы он вспахал поле Ареса, и описываются его подданные халиберы:

Они не пашут землю, не сажают плодовые деревья, не пасут стада на тучных лугах; они добывают руду и железо из необработанной земли и выменивают на них продукты питания. День не начинается для них без тяжкого труда, в темноте ночи и густом дыму проводят они, работая весь день…

Аристотель описал их способ получения стали: «халибы несколько раз промывали речной песок их страны - тем самым выделяя чёрный шлих (тяжелая фракция состоящая в основном из магнетита и гематита), и плавили в печах; полученный таким образом металл имел серебристый цвет и был нержавеющим».

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря : эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита , и обломков других пород, так что выплавляемая халибами сталь была легированной, и имела превосходные свойства. Такой своеобразный способ получения железа говорит о том, что халибы лишь распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона , у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди , серебра , золота и железа у древних хеттов были в соотношении 1: 160: 1280: 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога.

В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе - возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона Тутанхамона и его тестя Хаттусиля - царя хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя, и посылает только один кинжал из «хорошего железа» (то есть стали). Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты новые месторождения железа и рудники. Так на смену «Бронзовому» веку настал век «Железный».

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады » Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев :

«Прочие мужи ахейские меной вино покупали,
Те за звенящую медь, за седое железо меняли,
Те за воловые кожи или волов круторогих,
Те за своих полоненых. И пир уготовлен веселый…»

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

«Расторопный ковач, изготовив топор иль секиру,
В воду металл, раскаливши его, чтоб двойную
Он крепость имел, погружает…»

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах - от древнего «Horn» - рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру - заметно меньше температуры плавления чугуна , поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. Так получалось «хорошее железо» - и хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими и твердыми, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке - домна , домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100-1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке) и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron , по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторной переплавке в печи с усиленным продуванием через него воздуха, чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Библиография: Карл Бакс. Богатства земных недр. М.: Прогресс, 1986, стр. 244, глава «Железо»

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза , укр. залізо , ст.-слав. желѣзо , болг. желязо , сербохорв. жељезо , польск. żelazo , чеш. železo , словен. železo ).

Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός , что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха » и *glazъ «скала», с общей семой «камень » . Третья версия предполагает древнее заимствование из неизвестного языка .

Германские языки заимствовали название железа (готск. eisarn , англ. iron , нем. Eisen , нидерл. ijzer , дат. jern , швед. järn ) из кельтских .

Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h 1 esh 2 r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish 2 ro- «сильный, святой, обладающий сверхъестественной силой» .

Древнегреческое слово σίδηρος , возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра .

Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus , означающее «звезда», вероятно, имеют общее происхождение.

Изотопы

Природное железо состоит из четырёх стабильных изотопов : 54 Fe (изотопная распространённость 5,845 %), 56 Fe (91,754 %), 57 Fe (2,119 %) и 58 Fe (0,282 %). Так же известно более 20 нестабильных изотопов железа с массовыми числами от 45 до 72, наиболее устойчивые из которых - 60 Fe (период полураспада по уточнённым в 2009 году данным составляет 2,6 миллиона лет ), 55 Fe (2,737 года), 59 Fe (44,495 суток) и 52 Fe (8,275 часа); остальные изотопы имеют период полураспада менее 10 минут .

Изотоп железа 56 Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд (см. Железная звезда), а все последующие элементы могут образоваться только в результате взрывов сверхновых .

Геохимия железа

Гидротермальный источник с железистой водой. Оксиды железа окрашивают воду в бурый цвет

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию . При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002-0,02 мг/л. В речной воде несколько выше - 2 мг/л.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe 2 O 3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород .

По кристаллохимическим свойствам ион Fe 2+ близок к ионам Mg 2+ и Ca 2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит , Fe 2 O 3 ; содержит до 70 % Fe), магнитный железняк (магнетит , FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания , образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые , или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты .

В природе также широко распространены сульфиды железа - пирит FeS 2 (серный или железный колчедан) и пирротин . Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

По запасам железных руд Россия занимает первое место в мире. Содержание железа в морской воде - 1·10 −5 -1·10 −8 %.

Другие часто встречающиеся минералы железа:

  • Сидерит - FeCO 3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5-4,5 по шкале Мооса.
  • Марказит - FeS 2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6-4,9 г/см³ и твёрдостью 5-6 по шкале Мооса.
  • Лёллингит - FeAs 2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7-7,4 г/см³, твёрдость 5-5,5 по шкале Мооса.
  • Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6-6,2 г/см³ и твёрдостью 5,5-6 по шкале Мооса.
  • Мелантерит - FeSO 4 ·7H 2 O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8-1,9 г/см³.
  • Вивианит - Fe 3 (PO 4) 2 ·8H 2 O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5-2 по шкале Мооса.

Помимо вышеописанных минералов железа существуют, например:

Основные месторождения

По данным Геологической службы США (оценка 2011 г.), мировые разведанные запасы железной руды составляют порядка 178 млрд тонн. Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Украине, Франции, Индии. В России железо добывается на Курской магнитной аномалии (КМА), Кольском полуострове, в Карелии и в Сибири. Значительную роль в последнее время приобретают донные океанские месторождения, в которых железо совместно с марганцем и другими ценными металлами находится в конкрециях.

Получение

В промышленности железо получают из железной руды , в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C . В доменной печи углерод в виде кокса , железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод в виде кокса окисляется до монооксида углерода . Данный оксид образуется при горении в недостатке кислорода :

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III) :

Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция:

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи , содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишки углерода и другие примеси (сера , фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана , которые содержат водород . Водород легко восстанавливает железо:

,

при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле . Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей .

Физические свойства

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α-γ переходам кристаллической решётки происходит термообработка стали . Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо относится к умеренно тугоплавким металлом . В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.

Температура плавления железа 1539 °C, температура кипения - 2862 °C.

Химические свойства

Характерные степени окисления

  • Кислота в свободном виде не существует - получены только её соли.

Для железа характерны степени окисления железа - +2 и +3.

Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.

Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO 2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .

Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Свойства простого вещества

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида , препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины , который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe 2 O 3 ·xH 2 O.

Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадок турнбулевой сини :

Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen 3 (максимум светопоглощения - 520 нм) в широком диапазоне рН (4-9) .

Соединения железа (III)

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов , например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN − . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа 2+ , + , Fe(SCN) 3 , - . Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K 4 (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и 4− выпадает ярко-синий осадок берлинской лазури :

Соединения железа (VI)

Окислительные свойства ферратов используют для обеззараживания воды.

Соединения железа VII и VIII

Имеются сообщения об электрохимическом получении соединений железа(VIII). , , , однако независимых работ, подтверждающих эти результаты, нет.

Применение

Железная руда

Железо - один из самых используемых металлов , на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
  • Железо может входить в состав сплавов на основе других металлов - например, никелевых.
  • Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  • Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  • Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  • Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат .
  • Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  • Железо применяется в качестве анода в железо-никелевых аккумуляторах , железо-воздушных аккумуляторах .
  • Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Биологическое значение железа

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом . В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол , в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК .

Неорганические соединения железа встречаются в некоторых бактериях , иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень , мясо , яйца , бобовые , хлеб , крупы , свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа - был потерян «лишний» ноль после запятой).

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

Примечания

  1. Химическая энциклопедия: в 5 т / Редкол.: Кнунянц И. Л. (гл. ред.). - М .: Советская энциклопедия, 1990. - Т. 2. - С. 140. - 671 с. - 100 000 экз.
  2. Карапетьянц М. Х. , Дракин С. И. Общая и неорганическая химия: Учебник для вузов. - 4-е изд., стер. - М.: Химия, 2000, ISBN 5-7245-1130-4 , с. 529
  3. М. Фасмер. Этимологический словарь русского языка. - Прогресс. - 1986. - Т. 2. - С. 42-43.
  4. Трубачёв О. Н. Славянские этимологии. // Вопросы славянского языкознания, № 2, 1957.
  5. Boryś W. Słownik etymologiczny języka polskiego. - Kraków: Wydawnictwo Literackie. - 2005. - С. 753-754.
  6. Walde A. Lateinisches etymologisches Wörterbuch. - Carl Winter’s Universitätsbuchhandlung. - 1906. - С. 285.
  7. Мейе А. Основные особенности германской группы языков. - УРСС. - 2010. - С. 141.
  8. Matasović R. Etymological Dictionary of Proto-Celtic. - Brill. - 2009. - С. 172.
  9. Mallory, J. P., Adams, D. Q. Encyclopedia of Indo-European Culture. - Fitzroy-Dearborn. - 1997. - P. 314.
  10. «New Measurement of the 60 Fe Half-Life». Physical Review Letters 103 : 72502. DOI :10.1103/PhysRevLett.103.072502 .
  11. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties ». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 .
  12. Ю. М. Широков, Н. П. Юдин. Ядерная физика. М.: Наука, 1972. Глава Ядерная космофизика .
  13. Р. Рипан, И. Четяну. Неорганическая химия // Химия неметаллов = Chimia metalelor. - Москва: Мир, 1972. - Т. 2. - С. 482-483. - 871 с.
  14. Gold and Precious Metals
  15. Металловедение и термическая обработка стали. Справ. изд. В 3-х т./ Под ред. М. Л. Берштейна, А. Г. Рахштадта. - 4-е изд., перераб. и доп. Т. 2. Основы термической обработки. В 2-х кн. Кн. 1. М.: Металлургия, 1995. 336 с.
  16. T. Takahashi & W.A. Bassett, "High-Pressure Polymorph of Iron ," Science , Vol. 145 #3631, 31 Jul 1964, p 483-486.
  17. Schilt A. Analytical Application of 1,10-phenantroline and Related Compounds. Oxford, Pergamon Press, 1969.
  18. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989. С. 297.
  19. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989, С. 315.
  20. Брауэр Г. (ред.) Руководство по неорганическому синтезу. т. 5. М., Мир, 1985. С. 1757-1757.
  21. Реми Г. Курс неорганической химии. т. 2. М., Мир, 1966. С. 309.
  22. Киселёв Ю. М., Копелев Н. С., Спицын В. И., Мартыненко Л. И. Восьмивалентное железо // Докл. АН СССР. 1987. Т.292. С.628-631
  23. Перфильев Ю. Д., Копелев Н. С., Киселёв Ю. М., Спицын В. И. Мёссбауэровское исследование восьмивалентного железа // Докл. АН СССР. 1987. T.296. С.1406-1409
  24. Kopelev N.S., Kiselev Yu.M., Perfiliev Yu.D. Mossbauer spectroscopy of the oxocomplexes iron in higher oxidation states // J. Radioanal. Nucl. Chem. 1992. V.157. Р.401-411.
  25. «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» МР 2.3.1.2432-08

Источники (к разделу История)

  • Г. Г. Гиоргадзе. «Текст Анитты» и некоторые вопросы ранней истории хеттов
  • Р. М. Абрамишвили. К вопросу об освоении железа на территории Восточной Грузии, ВГМГ, XXII-В, 1961.
  • Хахутайшвили Д. А. К истории древнеколхской металлургии железа. Вопросы древней истории (Кавказско-ближневосточный сборник, вып. 4). Тбилиси, 1973.
  • Геродот. «История», 1:28.
  • Гомер. «Илиада», «Одиссея».
  • Вергилий. «Энеида», 3:105.
  • Аристотель. «О невероятных слухах», II, 48. ВДИ, 1947, № 2, стр. 327.
  • Ломоносов М. В. Первые основания металлургии.

См. также

  • Категория:Соединения железа

Ссылки

  • Болезни, вызванные недостатком и избытком железа в организме человека

Как материал стало известно с 3–4 тыс. до н. э. Поначалу в поле зрения человека попало метеоритное железо, так что в те времена оно ценилось выше золота. Затем хетты освоили разработку осадочных месторождений, а римляне научились плавить чугун.

С тех пор область использования металла только расширялась. И поэтому сегодня мы поговорим о применении железа и его соединений в жизни человека: в быту, народном хозяйстве, промышленности и об использовании металла в иных сферах.

Итак, давайте узнаем, почему железо получило наибольшее применение в металлургии.

Под железом зачастую подразумевают вовсе не вещество как таковое, а низкоуглеродистую электротехническую сталь – так называется сплав металла по ГОСТ. Действительно чистое железо получить непросто, и используется оно исключительно для производства магнитных материалов.

Железо является ферромагнетиком, то есть, намагничивается в присутствии магнитного поля. Однако это его свойство сильно зависит от примесей и структуры металла. абсолютного чистого железа в 100–200 раз превышают аналогичные показатели технической стали. То же самое можно сказать о величине зерна: чем крупнее зерно, тем лучше магнитные свойства вещества. Имеет значение и механическая обработка, хотя ее влияние и не столь впечатляющее. Только такое железо применяют для получения всех магнитных материалов для электротехники и магнитоприводов.

Во всех остальных областях народного хозяйства находит свое применение сталь и чугун, так что, говоря о применении железа, говорят об использовании стали.

Про способы применения сплавов железа расскажет видеоролик ниже:

Соединения

Все металлы, используемые в производстве, делят на цветные и черные. Черные – это сплавы железа, в частности, сталь и чугун, остальные – , серебряные, относятся к цветным. Соответственно, занимающееся выплавкой чугуна и стали, называется черной металлургией, а всех остальных – цветной. На долю черной металлургии приходится 95% всех металлургических процессов. Разделяются черные сплавы таким образом:

  • сталь – сплав железа с углеродом и другими ингредиентами, чья массовая доля не превышает 2,14%. Углерод придает стали пластичность и твердость. В состав могут входить также марганец, фосфор, сера и так далее;
  • чугун – сплав с углеродом, где допускается большее содержание элемента – до 4,3%. Причем чугуны отличаются по своим свойствам в зависимости от того, в каком виде сплав содержит углерод: если вещество вступило в реакцию с железом, получают белый чугун, если включено в виде графита – серый;
  • феррит – железо с минимальной примесью углерода и других элементов – 0,04%. Собственно, это и есть химически чистое железо;
  • перлит – не сплав, а механическая смесь карбида железа и феррита. Свойства его заметно отличаются от свойств металла;
  • аустенит – раствор углерода в железе с долей первого до 0,8%. Аустенит отличается пластичностью, магнитными свойствами не обладает.

Про методы применения железа в виде стали читайте ниже.

Стали

Конечно, наибольшее применение находят сталь и чугун, а их использование зависит от доли углерода в составе. По этому признаку различают углеродистые и легированные стали. В первом случае примеси носят постоянный характер, то есть, попадают в сплав из-за особенностей процесса выплавки. В легированные добавки вводят специально для придания материалу особых свойств. В качестве легирующих элементов применяют ванадий, хром, и так далее.

Углеродистые стали разделяются на 3 группы:

  • малоуглеродистые – доля элемента менее 0,25%, наиболее ковкие и пластичные;
  • среднеуглеродистые – с долей углерода до 0,6%;
  • высокоуглеродистые – содержание элемента превышает 0,6%.

Легированные стали тоже составляют собой 3 группы:

  • низколегированные – массовая доля всех компонентов составляет 2,5%:
  • среднелегированные – здесь суммарное содержание может достигать 10%;
  • высоколегированные – доля легирующих элементов превышает 10%.

Легированные стали обычно являются материалом для инструментов и машинных узлов, так как введение дополнительных ингредиентов повышает прочность сплава, придает ему жаростойкость или коррозионную стойкость. Углеродистые, в основном, применяют для каркасных сооружений, изготовления водопровода и так далее.

Все стали можно разделить по назначению:

  • строительные – в основном это высоко- или среднеуглеродистые стали. Сплавы применяются для всех строительных работ: от сооружения металлических каркасов до изготовления предметов быта и кровельного листа;
  • конструкционные – низкоуглеродистые стали с долей элемента до 0,75%. Это материал для всех отраслей машиностроения – от велосипедов до морских судов;
  • инструментальная – низкоуглеродистая, но отличается от конструкционной еще и очень низким содержанием марганца – не более 0,4%. Это основа измерительного, штампованного, режущего инструмента;
  • специальные стали – разделяются на 2 подвида: с особыми физическими качествами – электротехническая сталь с заданными магнитными свойствами, и с особыми химическими – жаропрочная, нержавеющая и так далее.

Применение легированных сталей определяется их качествами.

  • Так, нержавеющая сталь используется в строительстве и машиностроении, где требуется более высокая, чем обычно стойкость к коррозии.
  • Жаропрочные сплавы «работают» в условиях высоких температур – турбины, магистрали отопления. Жаростойкие – не окисляются при высоких температурах, что важно для многих рабочих узлов в теплотехнике.

Еще одно разделение сплавов – по качеству. Этот параметр определяет содержание фосфора и серы – вредных примесей, которые уменьшают прочность сплава. Различают 4 вида:

  • сталь обыкновенного качества включает до 0,06% серы и 0,07% фосфора. Это обычные строительные материалы, применяемые при изготовлении труб, швеллеров, уголков, профилей и другого металлопроката;
  • качественная – допускает долю серы до 0,035% и такую же долю фосфора. Также применяется в производстве металлопроката, корпусов, деталей машин и некоторых марок инструментальной стали;
  • высококачественная – доля серы и фосфора не превышает 0,025%, соответственно. К этой категории относят инструментальные и конструкционные стали, применяемые в условиях высокой нагрузки;
  • особовысококачественная – содержание серы менее 0,015%, фосфора – менее 0,025%. Этот материал отличается максимальной стойкостью к износу. Некоторые марки выделяются в особую категорию и маркируются соответствующим образом, например, шарикоподшипниковая сталь, или быстрорежущая – незаменимый элемент качественного режущего инструмента.

О применении чугуна и стали расскажет видео ниже:

Чугун

Применение чугуна не намного меньше, поскольку его механические качества вполне сопоставимы со многими марками стали. В соответствии с категорией чугуна различается и применение:

  • серый чугун – углерод в железе находится в виде графитовых пластинок. Отличается хорошими литьевыми свойствами и малой усадкой. Но наиболее примечательное его качество – стойкость к переменным нагрузкам. Серый чугун используют при изготовлении прокатных станков, станин, подшипников, маховиков, поршневых колец, деталей тракторных и автомобильных двигателей, корпусов и так далее;
  • белый чугун – углерод связан с железом. Почти целиком используется для получения стали;
  • высокопрочный чугун – углерод находится в виде включений шаровидной формы. Такая форма обеспечивает высокую стойкость к нагрузке на растяжение и изгиб. Из чугуна изготавливают детали турбин, коленчатые валы тракторов и автомобилей, шестерни, изложницы и так далее.

Чугун также можно легировать и получать сплав с самыми разными свойствами.

  • Износостойкий чугун применяется для изготовления насосных деталей, тормозов, дисков сцепления.
  • Жаростойкий применяется при сооружении доменных, мартеновских, термических печей.
  • Жаропрочный используется при сооружении газовых печей, при изготовлении компрессорного оборудования, дизельных двигателей.

Использование в строительстве

Сталь и чугун уникальным образом сочетают прочность, эксплуатационную долговечность и доступную стоимость. Поэтому заменить его каким-либо другим конструкционным материалом не представляется возможным. В строительстве продукция металлопроката является базовой наряду с бетоном и кирпичом.

Капитальное строительство

Металлу можно придать любую форму: от самой простой – прут, до причудливой сложной – кованое железо. В строительстве находят применение для всех вариантов.

Кроме того, что сталь сама по себе отличается прочностью, тем более после специальной обработки, в этой области активно применяется и еще одна особенность. Дело в том, что профильные изделия из металла ничем не уступают по прочности цельной детали таких же размеров и формы. А это значительно уменьшает материалоемкость строительных элементов, уменьшает их стоимость, снижает вес и так далее. В строительстве такое сочетание исключительно важно.

Применяемый металлопрокат разделяют на 3 основные группы.

  • Фасонный – швеллеры, двутавры, угловой и обычный профиль, а также перфорированный. Сюда же относят и специальный профиль, применяемый, например, в шахтных выработках. Фасонный металлопрокат применяют при возведении всех типов каркасов для любого сооружения – от зданий до мостов и плотин. Его же используют при необходимости усилить конструкцию.
  • Сортовой – арматура, балки, трубы, круги и прочее. Эти элементы используются едва ли не чаще, чем фасонный и очень многообразны:
    • арматура – стальные прутья разного диаметра, гладкие и с ребрами. Арматура предназначена для повышения прочности здания, причем показателем является не только стойкость к стационарной нагрузке, но и повышение прочности при нагрузке на растяжение и изгиб. Арматуру используют при возведении фундамента, перекрытий, усиления стен, а также при упрочнении и других конструктивных узлов – лестниц, например;
    • трубы – причем используются и круглые, и профильные. Предпочтительнее трубы прямоугольного квадратного сечения, поскольку их сварка и крепление более проста, чем в случае круглых, а стойкость к нагрузкам такая же;
    • балка – вариант цельнолитого изделия, когда требуется прочность при самых высоких нагрузках.
  • Листовой прокат – листы горячего и холодного проката с покрытием и без. Это кровельные листы, и так далее. Профнастил применяют не только для устройства кровли, но и при сооружении разнообразных ограждений, поскольку материал соединяет относительную легкость с высокой прочностью и стойкостью к перепадам температур.

Нержавеющие стали для листового проката применяют редко, поскольку стоимость сплава выше.

Отделочные работы

Основой их часто выступают металлические изделия – и трубы, и профиль, и листовое железо.

  • Трубы необычных форм активно применяют в современных интерьерах. Из них сооружают спальные блоки, перекрытия и перегородки в комнате, ограждения как лестничные, так и уличные, используют даже в производстве мебели. Здесь трубы, конечно, подбирают с красивым покрытием – , хром, хотя встречаются и окрашенные изделия.
  • Профиль – ниши и декоративные выступы, колонны и потолки, отделка стен и каминов и прочее и прочее. Все, что обшивается и облицовывается гипсокартоном, пленкой, вагонкой, панелями – абсолютно все имеет каркас из металлического профиля. В изготовлении мебели – шкафов-купе, например, также применяется специализированный профиль. Стальной по сравнению с отличается куда большей прочностью и долговечностью.
  • Металл может выступать не только каркасом, но отделочным материалом. Реечные, кассетные, панельные потолки исключительно разнообразны, интересны и долговечны. И рейки, и панели могут изготавливаться из , но если требуется долговечное и прочное решение – например, для отделки потолка железнодорожного вокзала, где требуется стойкость к вибрациям, используется, конечно же, сталь.
  • Двери – к отделочным работам уже не относятся, а выступают, скорее, элементом системы защиты. Входные двери из стали достаточной толщины являются самым популярным и надежным способом предупредить взлом жилища. То же самое можно сказать о гаражных воротах, например, или воротах во двор.
  • Лестничные конструкции – металлические лестницы очень разнообразны: от приставной или складной мансардной, до капитального сооружения на 2 этаж. Такой вариант прочен и надежен, при этом может быть очень красив. Современные модульные лестницы комбинируются со стеклом, прозрачным пластиком или даже деревом, а каменную лестницу могут украсить кованые перила.

Коммуникации

Несмотря на то что стальной трубопровод активно вытесняет пластиковые и металлопластиковые, до полной сдачи позиций еще чрезвычайно далеко. Причина проста: с прочностью и стойкостью стали мало что сравнится.

  • Водопровод и канализация – если для обслуживания частного дома или квартиры можно подключать пластиковые изделия, то о магистрали и даже трубопроводе, обслуживающем многоквартирный дом этого сказать нельзя. Допускаются только железные трубы, причем соответствующие твердо установленным стандартам.
  • Газопровод – вариантов нет, используется только сталь.
  • Системы отопления – в здании система может включать пластиковые трубы. Городские и районные магистрали, не говоря уже о трубопроводе, непосредственно обслуживающем котельную, могут быть только железными. Начальная температура нагретой воды намного выше той, которую может выдержать пластиковые водоводы, не говоря уж о давлении.
  • Батареи и радиаторы, как правило, тоже используются железные или чугунные – у чугуна выше теплоемкость и стойкость к гидроударам. Какими бы современными вариантами отопители не заменялись, сталь в конструкции все равно наличествует. Электрические радиаторы – конвекторные, масляные, всегда изготавливаются из стали, поскольку последняя, обладая высокой теплопроводностью, моментально отдает тепло воздуху.
  • Кабели – проводку в доме чаще всего прячут в пластиковые короба. Однако силовые кабели с большим сечением защищаются металлическими трубами.
  • Дымоходы – стальные трубы являются вариантом самым простым, доступным и легким. Для их изготовления применяют специальную жаростойкую сталь, причем устойчивую к коррозии.

Оборудование и предметы быта

Любая техника, устанавливаемая в доме, производится из стали.

  • Отопительные котлы – на каком бы топливе аппараты не работали, корпуса их всегда изготавливаются из стали. В твердотопливных печах есть чугунные детали.
  • Кухонное оборудование – плиты, духовки, микроволновки, пароварки и так далее имеют стальные корпуса и детали. На кухне сталь является и востребованным отделочным материалом: рабочие столешницы, например, отделка фартука. Сталь – материал очень декоративный и лишь кажется простым.
  • Стиральные машины, сушилки и посудомойки также не обходятся без железа.
  • Сантехника из стали применяется редко – из-за высокой теплопроводности, а вот чугунные ванны и умывальники устанавливают до сих пор. Материал лучше хранит тепло и очень долговечен.
  • Посуда и столовые приборы, подставки и вазы, держатели и фурнитура, электрооборудование и мелкие аксессуары – места, где железо не используется, на пальцах можно пересчитать.
  • Кованое железо – декоративные предметы такого рода являются настоящим произведением искусства, особенно когда речь идет о горячей ковке, при которой каждое изделие, каждая деталь изготавливается вручную и только один раз. Кованые решетки, перила, камины, ограждения украшают дворцы и современные павильоны, и, конечно, жилые квартиры.

Железо – главный конструкционный материал. В строительстве сталь и чугун являются базовыми материалами наряду со строительным камнем. Применение и разнообразие сплавов не поддается описанию.

Еще больше полезной информации по вопросу применения железа содержится в этом видео:

В данной статье будет рассказано о железе, его химических и физических свойствах. Они имеют большое значение для определения способа перевозки железа, его условий хранения, получения, выплавки и т. д.

Железо является одним из наиболее популярных металлов. Но зачастую так называют его сплав с какой-либо примесью, например, с углеродом. Это помогает сохранить пластичность и мягкость самого металла. Показателем в таком составе будет количество чистого металла, углерода и примесей.

Для выплавки стали применяют метод металлизации, который помогает изделию стать более устойчивым к внешним воздействиям, таким как эрозия, коррозия, износ. При этом содержание дополнительной примеси может быть разным.

Углерод

Процент содержания углерода в сплаве может колебаться от 0,2 % до 10%. Это зависит от способа восстановления железа. При этом само количество и степень металлизации могут варьироваться очень широко. В газообразно-восстановительных процессах нитевидный углерод осаждается из газовой фазы на поверхность железа. Но реакция до конца не завершается, и продукт, подвергшийся металлизации, имеет на своей поверхности и в порах сажу, образовавшуюся из углерода.

Фосфор

В процессе прямого восстановления железа количество фосфора не снижается, а процент его содержания при металлизации равен его количеству в исходном сырье. Понизить это может полное обогащение руды, используемой для процесса восстановления. Причем соотношение фосфора и железа зависит от увеличения процента железа, которое ведет к снижению процента содержания фосфора. В большинстве составов он равен 0,010-0,020%, редко 0,030%.

Сера

Сырьем для прямого восстановления железа часто служат окатыши, не подвергшиеся флюсованию, поскольку в них удалена большая часть серы путем окислительного обжига, и тогда главным источником серы будет являться восстановитель.

При исходном твердом восстановителе количество серы в составе металлизованного материала может оказаться высоким. Тогда его понижения можно достичь добавлением известняка и доломита.

В случае газообразного восстановителя на выходе получается продукт с низким процентом серы, до 0,003.

Азот и водород

Азот содержится в малых количествах в руде, что определяет его небольшой процент и в металлизованных материалах, до 0,003%. Количество водорода доходит до 150 куб. см. на 100 гр., причем в стали его процент такой же, как и при выплавке лома.

Цветные металлы

Количество цветных металлов, а именно никеля, хрома, свинца, меди, имеет состав железа прямого восстановления, и часто оно низкое благодаря чистоте сырья. Такой показатель губчатого железа можно сравнить с чугуном. Разница будет лишь в том, что в чугуне есть хром в восстановленном виде.

Титан, хром, ванадий находятся в металлизованных окатышах в составе окислов. В процессе плавки достаточно просто организовать возможность, мешающую восстановить их из шлака. Это дает способность получить металл, в составе которого будет низкий процент содержания титана, хрома и, возможно, марганца.

Железо, состав которого включает в себя олово, свинец, цинк и другие цветные металлы, причем в небольшом и устойчивом проценте, образуется при окислительном процессе обжига окатышей, прямом восстановлении железа и плавке. Все это благодаря малому количеству примесей названных металлов в руде, а также частичному их удалению.

Определено, что удаление цинка возможно при металлизации и плавке. Свинец испаряется во время обжига и восстановления, но в небольшой степени, а главным будет плавильный процесс. Олово, как и сурьма, с трудом удаляются из состава из-за низкого их содержания, или вообще переходят в металл. Исследования, проведенные лабораторным путем, показали, что то, из чего состоит железо, определяется количеством цветных металлов в качестве примесей. Их процент колеблется от менее чем 0,01, как в стали с содержанием никеля, хрома и меди, так до менее 0,001 – в составах с оловом, свинцом, мышьяком, сурьмой и цинком.

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия). Металл средней активности, восстановитель.

Основные степени окисления — +2, +3

Простое вещество железо - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.

Химические свойства простого вещества — железа:

Ржавление и горение в кислороде

1) На воздухе железо легко окисляется в присутствии влаги (ржавление):

4Fe + 3O 2 + 6H 2 O → 4Fe(OH) 3

Накалённая железная проволока горит в кислороде, образуя окалину — оксид железа (II, III):

3Fe + 2O 2 → Fe 3 O 4

3Fe+2O 2 →(Fe II Fe 2 III)O 4 (160 °С)

2) При высокой температуре (700–900°C) железо реагирует с парами воды:

3Fe + 4H 2 O – t° → Fe 3 O 4 + 4H 2 ­

3) Железо реагирует с неметаллами при нагревании:

2Fe+3Cl 2 →2FeCl 3 (200 °С)

Fe + S – t° → FeS (600 °С)

Fe+2S → Fe +2 (S 2 -1) (700°С)

4) В ряду напряжений стоит левее водорода, реагирует с разбавленными кислотами НСl и Н 2 SO 4 , при этом образуются соли железа(II) и выделяется водород:

Fe + 2HCl → FeCl 2 + H 2 ­ (реакции проводятся без доступа воздуха, иначе Fe +2 постепенно переводится кислородом в Fe +3)

Fe + H 2 SO 4 (разб.) → FeSO 4 + H 2 ­

В концентрированных кислотах–окислителях железо растворяется только при нагревании, оно сразу переходит в катион Fе 3+ :

2Fe + 6H 2 SO 4 (конц.) – t° → Fe 2 (SO 4) 3 + 3SO 2 ­ + 6H 2 O

Fe + 6HNO 3 (конц.) – t° → Fe(NO 3) 3 + 3NO 2 ­ + 3H 2 O

(на холоде концентрированные азотная и серная кислоты пассивируют

Железный гвоздь, погруженный в голубоватый раствор медного купороса, постепенно покрывается налетом красной металлической меди

5) Железо вытесняет металлы, стоящие правее его в из растворов их солей.

Fe + CuSO 4 → FeSO 4 + Cu

Амфотерность железа проявляется только в концентрированных щелочах при кипячении:

Fе + 2NaОН (50 %) + 2Н 2 O= Nа 2 ↓+ Н 2

и образуется осадок тетрагидроксоферрата(II) натрия.

Техническое железо - сплавы железа с углеродом: чугун содержит 2,06-6,67 % С, сталь 0,02-2,06 % С, часто присутствуют другие естественные примеси (S, Р, Si) и вводимые искусственно специальные добавки (Мn, Ni, Сr), что придает сплавам железа технически полезные свойства — твердость, термическую и коррозионную стойкость, ковкость и др.

Доменный процесс производства чугуна

Доменный процесс производства чугуна составляют следующие стадии:

а) подготовка (обжиг) сульфидных и карбонатных руд - перевод в оксидную руду:

FeS 2 →Fe 2 O 3 (O 2 ,800°С, -SO 2) FeCO 3 →Fe 2 O 3 (O 2 ,500-600°С, -CO 2)

б) сжигание кокса при горячем дутье:

С (кокс) + O 2 (воздух) →СO 2 (600-700°С) СO 2 + С (кокс) ⇌ 2СО (700-1000 °С)

в) восстановление оксидной руды угарным газом СО последовательно:

Fe 2 O 3 →(CO) (Fe II Fe 2 III)O 4 →(CO) FeO→(CO) Fe

г) науглероживание железа (до 6,67 % С) и расплавление чугуна:

Fе (т) →(C (кокс) 900-1200°С) Fе (ж) (чугун, t пл 1145°С)

В чугуне всегда в виде зерен присутствуют цементит Fe 2 С и графит.

Производство стали

Передел чугуна в сталь проводится в специальных печах (конвертерных, мартеновских, электрических), отличающихся способом обогрева; температура процесса 1700-2000 °С. Продувание воздуха, обогащенного кислородом, приводит к выгоранию из чугуна избыточного углерода, а также серы, фосфора и кремния в виде оксидов. При этом оксиды либо улавливаются в виде отходящих газов (СО 2 , SО 2), либо связываются в легко отделяемый шлак — смесь Са 3 (РO 4) 2 и СаSiO 3 . Для получения специальных сталей в печь вводят легирующие добавки других металлов.

Получение чистого железа в промышленности — электролиз раствора солей железа, например:

FеСl 2 → Fе↓ + Сl 2 (90°С) (электролиз)

(существуют и другие специальные методы, в том числе восстановление оксидов железа водородом).

Чистое железо применяется в производстве специальных сплавов, при изготовлении сердечников электромагнитов и трансформаторов, чугун — в производстве литья и стали, сталь - как конструкционный и инструментальный материалы, в том числе износо-, жаро- и коррозионно-стойкие.

Оксид железа(II) F еО . Амфотерный оксид с большим преобладанием основных свойств. Черный, имеет ионное строение Fе 2+ O 2- . При нагревании вначале разлагается, затем образуется вновь. Не образуется при сгорании железа на воздухе. Не реагирует с водой. Разлагается кислотами, сплавляется со щелочами. Медленно окисляется во влажном воздухе. Восстанавливается водородом, коксом. Участвует в доменном процессе выплавки чугуна. Применяется как компонент керамики и минеральных красок. Уравнения важнейших реакций:

4FеО ⇌(Fe II Fe 2 III) + Fе (560-700 °С, 900-1000°С)

FеО + 2НС1 (разб.) = FеС1 2 + Н 2 O

FеО + 4НNO 3 (конц.) = Fе(NO 3) 3 +NO 2 + 2Н 2 O

FеО + 4NаОН =2Н 2 O + N а 4 F е O 3(красн .) триоксоферрат(II) (400-500 °С)

FеО + Н 2 =Н 2 O + Fе (особо чистое) (350°С)

FеО + С (кокс) = Fе + СО (выше 1000 °С)

FеО + СО = Fе + СO 2 (900°С)

4FеО + 2Н 2 O (влага) + O 2 (воздух) →4FеО(ОН) (t)

6FеО + O 2 = 2(Fe II Fe 2 III)O 4 (300-500°С)

Получение в лаборатории : термическое разложение соединений железа (II) без доступа воздуха:

Fе(ОН) 2 = FеО + Н 2 O (150-200 °С)

FеСОз = FеО + СO 2 (490-550 °С)

Оксид дижелеза (III) – железа( II ) ( Fe II Fe 2 III)O 4 . Двойной оксид. Черный, имеет ионное строение Fe 2+ (Fе 3+) 2 (O 2-) 4 . Термически устойчив до высоких температур. Не реагирует с водой. Разлагается кислотами. Восстанавливается водородом, раскаленным железом. Участвует в доменном процессе производства чугуна. Применяется как компонент минеральных красок (железный сурик ), керамики, цветного цемента. Продукт специального окисления поверхности стальных изделий (чернение, воронение ). По составу отвечает коричневой ржавчине и темной окалине на железе. Применение брутто-формулы Fe 3 O 4 не рекомендуется. Уравнения важнейших реакций:

2(Fe II Fe 2 III)O 4 = 6FеО + O 2 (выше 1538 °С)

(Fe II Fe 2 III)O 4 + 8НС1 (разб.) = FеС1 2 + 2FеС1 3 + 4Н 2 O

(Fe II Fe 2 III)O 4 +10НNO 3 (конц.) =3Fе(NO 3) 3 + NO 2 + 5Н 2 O

(Fe II Fe 2 III)O 4 + O 2 (воздух) = 6Fе 2 O 3 (450-600°С)

(Fe II Fe 2 III)O 4 + 4Н 2 = 4Н 2 O + 3Fе (особо чистое, 1000 °С)

(Fe II Fe 2 III)O 4 + СО =ЗFеО + СO 2 (500-800°C)

(Fe II Fe 2 III)O4 + Fе ⇌4FеО (900-1000 °С, 560-700 °С)

Получение: сгорание железа (см.) на воздухе.

магнетит.

Оксид железа(III) F е 2 О 3 . Амфотерный оксид с преобладанием основных свойств. Красно-коричневый, имеет ионное строение (Fе 3+) 2 (O 2-) 3. Термически устойчив до высоких температур. Не образуется при сгорании железа на воздухе. Не реагирует с водой, из раствора выпадает бурый аморфный гидрат Fе 2 O 3 nН 2 О. Медленно реагирует с кислотами и щелочами. Восстанавливается монооксидом углерода, расплавленным железом. Сплавляется с оксидами других металлов и образует двойные оксиды — шпинели (технические продукты называются ферритами). Применяется как сырье при выплавке чугуна в доменном процессе, катализатор в производстве аммиака, компонент керамики, цветных цементов и минеральных красок, при термитной сварке стальных конструкций, как носитель звука и изображения на магнитных лентах, как полирующее средство для стали и стекла.

Уравнения важнейших реакций:

6Fе 2 O 3 = 4(Fe II Fe 2 III)O 4 +O 2 (1200-1300 °С)

Fе 2 O 3 + 6НС1 (разб.) →2FеС1 3 + ЗН 2 O (t) (600°С,р)

Fе 2 O 3 + 2NaОН (конц.) →Н 2 O+ 2 N а F е O 2 (красн.) диоксоферрат(III)

Fе 2 О 3 + МО=(М II Fе 2 II I)O 4 (М=Сu, Мn, Fе, Ni, Zn)

Fе 2 O 3 + ЗН 2 =ЗН 2 O+ 2Fе (особо чистое, 1050-1100 °С)

Fе 2 O 3 + Fе = ЗFеО (900 °С)

3Fе 2 O 3 + СО = 2(Fe II Fе 2 III)O 4 + СO 2 (400-600 °С)

Получение в лаборатории — термическое разложение солей железа (III) на воздухе:

Fе 2 (SO 4) 3 = Fе 2 O 3 + 3SO 3 (500-700 °С)

4{Fе(NO 3) 3 9 Н 2 O} = 2Fе a O 3 + 12NO 2 + 3O 2 + 36Н 2 O (600-700 °С)

В природе — оксидные руды железа гематит Fе 2 O 3 и лимонит Fе 2 O 3 nН 2 O

Гидроксид железа (II) F е(ОН) 2 . Амфотерный гидроксид с преобладанием основных свойств. Белый (иногда с зеленоватым оттенком), связи Fе — ОН преимущественно ковалентные. Термически неустойчив. Легко окисляется на воздухе, особенно во влажном состоянии (темнеет). Нерастворим в воде. Реагирует с разбавленными кислотами, концентрированными щелочами. Типичный восстановитель. Промежуточный продукт при ржавлении железа. Применяется в изготовлении активной массы железоникелевых аккумуляторов.

Уравнения важнейших реакций:

Fе(OН) 2 = FеО + Н 2 O (150-200 °С, в атм.N 2)

Fе(ОН) 2 + 2НС1 (разб.) =FеС1 2 + 2Н 2 O

Fе(ОН) 2 + 2NаОН (> 50%) = Nа 2 ↓ (сине-зеленый) (кипячение)

4Fе(ОН) 2 (суспензия) + O 2 (воздух) →4FеО(ОН)↓ + 2Н 2 O (t)

2Fе(ОН) 2 (суспензия) +Н 2 O 2 (разб.) = 2FеО(ОН)↓ + 2Н 2 O

Fе(ОН) 2 + КNO 3 (конц.) = FеО(ОН)↓ + NO+ КОН (60 °С)

Получение : осаждение из раствора щелочами или гидратом аммиака в инертной атмосфере:

Fе 2+ + 2OH (разб.) = F е(ОН) 2 ↓

Fе 2+ + 2(NH 3 Н 2 O) = F е(ОН) 2 ↓ + 2NH 4

Метагидроксид железа F еО(ОН). Амфотерный гидроксид с преобладанием основных свойств. Светло-коричневый, связи Fе — О и Fе — ОН преимущественно ковалентные. При нагревании разлагается без плавления. Нерастворим в воде. Осаждается из раствора в виде бурого аморфного полигидрата Fе 2 O 3 nН 2 O, который при выдерживании под разбавленным щелочным раствором или при высушивании переходит в FеО(ОН). Реагирует с кислотами, твердыми щелочами. Слабый окислитель и восстановитель. Спекается с Fе(ОН) 2 . Промежуточный продукт при ржавлении железа. Применяется как основа желтых минеральных красок и эмалей, поглотитель отходящих газов, катализатор в органическом синтезе.

Соединение состава Fе(ОН) 3 не известно (не получено).

Уравнения важнейших реакций:

Fе 2 O 3 . nН 2 O→(200-250 °С, — H 2 O ) FеО(ОН)→(560-700° С на воздухе, -H2O) →Fе 2 О 3

FеО(ОН) + ЗНС1 (разб.) =FеС1 3 + 2Н 2 O

FeO(OH)→Fe 2 O 3 . nH 2 O -коллоид (NаОН (конц.))

FеО(ОН)→N а 3 [ F е(ОН) 6 ] белый , Nа 5 и К 4 соответственно; в обоих случаях выпадает синий продукт одинакового состава и строения, КFе III . В лаборатории этот осадок называют берлинская лазурь , или турнбуллева синь :

Fе 2+ + К + + 3- = КFе III ↓

Fе 3+ + К + + 4- = КFе III ↓

Химические названия исходных реактивов и продукта реакций:

К 3 Fе III - гексацианоферрат (III) калия

К 4 Fе III - гексацианоферрат (II) калия

КFе III - гексацианоферрат (II) железа (Ш) калия

Кроме того, хорошим реактивом на ионы Fе 3+ является тиоцианат-ион NСS — , железо (III) соединяется с ним, и появляется ярко-красная («кровавая») окраска:

Fе 3+ + 6NСS — = 3-

Этим реактивом (например, в виде соли КNСS) можно обнаружить даже следы железа (III) в водопроводной воде, если она проходит через железные трубы, покрытые изнутри ржавчиной.


Оксидами железа называют соединения железа с кислородом.

Наиболее известны три оксида железа: оксид железа (II) – FeO ,оксид железа (III ) – Fe 2 O 3 и оксид железа (II , III ) – Fe 3 O 4 .

Оксид железа (II)


Химическая формула оксида двухвалентного железа - FeO . Это соединение имеет чёрный цвет.

FeO легко реагирует с разбавленной соляной кислотой и концентрированной азотной кислотой.

FeO + 2HCl → FeCl 2 + H 2 O

FeO + 4HNO 3 → Fe(NO 3) 3 + NO 2 + 2H 2 O

С водой и с солями в реакцию не вступает.

При взаимодействии с водородом при температуре 350 о С и коксом при температуре выше 1000 о С восстанавливается до чистого железа.

FeO +H 2 → Fe + H 2 O

FeO +C → Fe + CO

Получают оксид железа (II) разными способами:

1. В результате реакции восстановления оксида трёхвалентного железа угарным газом.

Fe 2 O 3 + CO → 2 FeO + CO 2

2. Нагревая железо при низком давлении кислорода

2Fe + O 2 → 2 FeO

3. Разлагая оксалат двухвалентного железа в вакууме

FeC 2 O 4 → FeO +CO + CO 2

4. Взаимодействием железа с оксидами железа при температуре 900-1000 о

Fe + Fe 2 O 3 → 3 FeO

Fe + Fe 3 O 4 → 4 FeO

В природе оксид двухвалентного железа существует как минерал вюстит.

В промышленности применяется при выплавке чугуна в домнах, в процессе чернения (воронения) стали. Входит он в состав красителей и керамики.

Оксид железа (III )


Химическая формула Fe 2 O 3 . Это соединение трёхвалентного железа с кислородом. Представляет собой порошок красно-коричневого цвета. В природе встречается как минерал гематит.

Fe 2 O 3 имеет и другие названия: окись железа, железный сурик, крокус, пигмент красный 101, пищевой краситель E172 .

В реакцию с водой не вступает. Может взаимодействовать как с кислотами, так и со щелочами.

Fe 2 O 3 + 6HCl → 2 FeCl 3 + 3H 2 O

Fe 2 O 3 + 2NaOH → 2NaFeO 2 + H 2 O

Оксид железа (III) применяют для окраски строительных материалов: кирпича, цемента, керамики, бетона, тротуарной плитки, линолеума. Добавляют его в качестве красителя в краски и эмали, в полиграфические краски. В качестве катализатора оксид железа используется в производстве аммиака. В пищевой промышленности он известен как Е172.

Оксид железа (II, III )


Химическая формула Fe 3 O 4 . Эту формулу можно написать и по-другому: FeO Fe 2 O 3 .

В природе встречается как минерал магнетит, или магнитный железняк. Он является хорошим проводником электрического тока и обладает магнитными свойствами. Образуется при горении железа и при действии перегретого пара на железо.

3Fe + 2 O 2 → Fe 3 O 4

3Fe + 4H 2 O → Fe 3 O 4 + 4H 2

Нагревание при температуре 1538 о С приводит к его распаду

2Fe 3 O 4 → 6FeO + O 2

Вступает в реакцию с кислотами

Fe 3 O 4 + 8HCl → FeCl 2 + 2FeCl 3 + 4H 2 O

Fe 3 O 4 + 10HNO 3 → 3Fe(NO 3) 3 + NO 2 + 5H 2 O

Со щелочами реагирует при сплавлении

Fe 3 O 4 + 14NaOH → Na 3 FeO 3 + 2Na 5 FeO 4 + 7H 2 O

Вступает в реакцию с кислородом воздуха

4 Fe 3 O 4 + O 2 → 6Fe 2 O 3

Восстановление происходит при реакции с водородом и монооксидом углерода

Fe 3 O 4 + 4H 2 → 3Fe + 4H 2 O

Fe 3 O 4 + 4CO → 3Fe +4CO 2

Магнитные наночастицы оксида Fe 3 O 4 нашли применение в магнитно-резонансной томографии. Они же используются в производстве магнитных носителей. Оксид железа Fe 3 O 4 входит в состав красок, которые производятся специально для военных кораблей, подводных лодок и другой техники. Из плавленного магнетита изготавливают электроды для некоторых электрохимических процессов.



Понравилась статья? Поделитесь с друзьями!