Собственный фон счетчика гейгера в неработающем состоянии. Принцип действия счетчика гейгера и современные дозиметры

Строение и принцип работы счетчика Гейгера – Мюллера

В последнее время, внимание к радиационной безопасности со стороны обычных граждан в нашей стране все в большей степени возрастает. И это связано не только с трагическими событиями на чернобыльской АЭС и дальнейшими ее последствиями, но и с различного рода происшествиями, которые периодически случаются в том или ином месте планеты. В связи с этим, в конце прошлого века стали появляться приборы дозиметрического контроля радиации бытового назначения . И такие приборы очень многим людям спасли не только здоровье, но иногда и жизнь, и это касается не только прилежащих к зоне отчуждения территориях. Поэтому вопросы радиационной безопасности актуальны в любом месте нашей страны и по сегодняшний день.

В се бытовые и практически все профессиональные современные дозиметры оснащаются . По-другому его можно назвать чувствительным элементом дозиметра. Данный прибор был изобретен в 1908 году немецким физиком Гансом Гейгером, а спустя двадцать лет, данную разработку усовершенствовал еще один физик Вальтер Мюллер, и именно принцип этого устройства и применяется в и по настоящий момент.

Н екоторые современные дозиметры имеют сразу по четыре счетчика, что позволяет повысить точность измерений и чувствительность прибора, а также уменьшить время проведения замера. Большинство счетчиков Гейгера – Мюллера способны регистрировать гамма-излучение, высокоэнергетическое бета-излучение и рентгеновские лучи. Однако есть специальные разработки для определения альфа-частиц высоких энергий. Для настройки дозиметра на определение только гамма-излучения, самого опасного из трех видов радиации, чувствительную камеру укрывают специальным кожухом из свинца или другой стали, что позволяет отсечь проникновение в счетчик бета-частиц.

В современных дозиметрах бытового и профессионального назначения широко применяются датчики типа СБМ-20, СБМ-20-1, СБМ-20У, СБМ-21, СБМ-21-1. Они отличаются габаритными размерами камеры и другими параметрами, для линейки 20-х датчиков характерны следующие габариты, длина 110 мм, диаметр 11 мм, а для 21-й модели, длина 20-22 мм при диаметре 6мм. Важно понимать, что чем больше размеры камеры, тем большее количество радиоактивных элементов будет через нее пролетать, и тем большей чувствительностью и точностью она обладает. Так, для 20-х серий датчика характерны размеры в 8-10 раз большие, чем для 21-й, примерно в таких же пропорциях мы будем иметь разницу в чувствительности.

К онструкцию счетчика Гейгера можно схематически описать так. Датчик, состоящий из цилиндрического контейнера, в который закачан инертный газ (к примеру, аргон, неон или их смеси) под минимальным давлением, это делается для облегчения возникновения электрического разряда между катодом и анодом. Катод, чаще всего, представляет собой весь металлический корпус чувствительного датчика, а анод небольшую проволочку, размещенную на изоляторах. Иногда катод дополнительно оборачивают защитным кожухом из нержавейки или свинца, это делается для настройки счетчика на определение только гамма-квантов.

Д ля бытового применения, в настоящее время, чаще всего используются датчики торцевого исполнения (к примеру, Бета-1, Бета-2). Такие счетчики устроены таким образом, что способны обнаруживать и регистрировать даже альфа-частицы. Такой счетчик представляет собой плоский цилиндр с расположенными внутри электродами, и входным (рабочим) окном, выполненным из слюдяной пленки толщиной всего 12 мкм. Такая конструкция позволяет определить (с близкого расстояния) высокоэнергетические альфа-частицы и слабоэнергетические бета-частицы. При этом площадь рабочего окна счетчиков Бета-1 и Бета 1-1 составляет 7 кв.см. Площадь слюдяного рабочего окна для прибора Бета-2 в 2 раза больше, чем у Бета-1, его вполне можно использовать для определения , и т.д.

Е сли говорить о принципе работы камеры счетчика Гейгера, то вкратце ее можно описать следующим образом. При активации , на катод и анод подается высокое напряжение (порядка 350 – 475 вольт), через нагрузочный резистор, однако между ними не происходит разряда из-за инертного газа, служащего диэлектриком. При попадании в камеру , ее энергии оказывается достаточно, чтобы выбить свободный электрон из материала корпуса камеры или катода, этот электрон лавинообразно начинает выбивать свободные электроны из окружающего инертного газа и происходит его ионизация, которая в итоге приводит к разряду между электродами. Цепь замыкается, и данный факт можно зарегистрировать при помощи микросхемы прибора, что является фактом обнаружения или кванта гамма или рентгеновского излучения. Затем камера приходит в исходное состояние, что позволяет обнаружить следующую частицу.

Ч тобы процесс разряда в камере прекратить и подготовить камеру для регистрации следующей частицы, существует два способа, один из них основан на том, что на очень короткий промежуток времени прекращается подача напряжения на электроды, что прекращает процесс ионизации газа. Второй способ основан на добавлении в инертный газ еще одного вещества, к примеру, йода, спирта и других веществ, при этом они приводят к уменьшению напряжения на электродах, что также прекращает процесс дальнейшей ионизации и камера становится способной обнаружить следующий радиоактивный элемент. При данном методе используется нагрузочный резистор большой емкости.

П о количеству разрядов в камере счетчика и можно судить об уровне радиации на измеряемой местности или от конкретного предмета.

Счетчик Гейгера представляет собой вакуумированный баллон с двумя электродами, в который введена газовая смесь, состоящая из легкоионизируемых неона и аргона с небольшой добавкой галогена - хлора или брома.
К электродам прикладывают высокое напряжение, которое само по себе не вызывает каких-либо разрядных явлений (см. рис.).

В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации - след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей.
Первичные электроны, ускоряясь в электрическом поле, ионизируют «по дороге» другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Обратный процесс - возвращение газовой среды в ее исходное состояние - происходит под действием содержащегося в ней галогена, который способствует интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика и фактически определяющий его быстродействие - так называемое «мертвое» время, - является важной паспортной характеристикой счетчика.

Галоген - расходуемая часть газовой среды счетчика. Но эта часть столь велика, что в режиме фонового счета ее хватило бы на столетия (наработка по галогену, например, счетчика СБМ20 составляет не менее 2 10 10 импульсов).
Счетчики такого типа называют галогеновыми самогасящимися. Отличаясь самым низким напряжением питания, превосходными параметрами выходного сигнала и достаточно высоким быстродействием, они оказались особенно удобными для применения в качестве датчиков ионизирующего излучения в бытовых приборах радиационного контроля.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения - α, β, γ, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика зависит от его конструкции.
Чаще встречаются счетчики с цилиндрическим баллоном, выполненным из нержавеющей стали толщиной 0,05....0,06 мм. Баллон в таком счетчике является и его катодом. Спектральная чувствительность такого тонкостенного счетчика ограничена γ- и жестким β-излучением.

Счетчики со стеклянным баллоном чувствительны лишь к γ-излучению (стекло толщиной в 1 мм для β-излучения является почти непреодолимой преградой). Катодом в таких счетчиках служит тонкий проводящий слой, нанесенный на внутреннюю поверхность стекла. Практически полностью теряет чувствительность к β-излучению и счетчик с толстостенным (более 0,2 мм) металлическим баллоном.

В счетчиках Гейгера, предназначенных для регистрации мягкого β-излучения, делают специальные окна из очень тонкой слюды.
Окно рентгеновского счетчика изготавливают из бериллия, а ультрафиолетового - из кварцевого стекла.

В счетчик нейтронов вводят бор, при взаимодействии с которым поток нейтронов преобразуется в легкорегистрируемые α-частицы.
Фотонное излучение - ультрафиолетовое, рентгеновское, γ-излучение - счетчики Гейгера воспринимают опосредованно: через фотоэффект, комптон-эффект, эффект рождения пар; в каждом случае происходит преобразование взаимодействующего с веществом катода излучения в поток электронов.

Каждая фиксируемая счетчиком Гейгера частица возбуждает в нем короткий (доли миллисекунды) импульс тока. Число импульсов, возникающих в единицу времени - скорость счета счетчика Гейгера, - зависит от уровня ионизирующей радиации и напряжения на его электродах. Типичный график зависимости скорости счета от напряжения питания U пит показан на рис. a.

Здесь:
Uнс - напряжение начала счета;
Umin и Umax - нижняя и верхняя границы рабочего участка, так называемого плато, на котором скорость счета почти не зависит от напряжения питания счетчика.
Рабочее напряжение Up обычно выбирают в середине этого участка.
Ему соответствует N(Up) - скорость счета в этом режиме.
На рис. б приведена зависимость N(Uпит) для счетчика СБМ20, находящегося в поле ионизирующей радиации, примерно в 1000 раз превышающей уровень естественного радиационного фона.

Зависимость скорости счета от уровня радиационного облучения счетчика - важнейшая его характеристика.
График этой зависимости имеет почти линейный характер, и поэтому нередко радиационную чувствительность счетчика выражают через имп/мкР (импульсов на микрорентген; эта размерность следует из отношения скорости счета - имп/с - к уровню радиации - мкР/с). На рис. 4 приведен график этой зависимости для счетчика СБМ20.
В тех случаях, когда она не указана (нередких, к сожалению), судить о радиационной чувствительности счетчика приходится по другому его, тоже очень важному параметру - собственному фону.
Так называют скорость счета, причиной которой являются две составляющие: внешняя - естественный радиационный фон, и внутренняя - излучение радионуклидов, оказавшихся в самой конструкции счетчика, а также спонтанная электронная эмиссия его катода.

Еще одной важной характеристикой счетчика Гейгера является зависимость его радиационной чувствительности от энергии (жесткости) ионизирующих частиц.
На профессиональном жаргоне график этой зависимости называют «ходом с жесткостью». В какой мере эта зависимость важна, показывает график на рис. 5
«Ход с жесткостью» будет влиять, очевидно, на точность проводимых измерений.

Не обсуждая вопрос о том, нужна ли высокая точность измерений бытовому радиометру, заметим, что подобные приборы промышленного изготовления отличаются от любительских лишь коррекцией счетчика Гейгера по жесткости. Для этого на него надевают «рубашку» - пассивный фильтр. Этот фильтр должен, во-первых, «отрезать» посторонние излучения (прежде всего, (β-излучение), и, во-вторых, своей приблизительно обратной по отношению к счетчику жесткостной характеристикой скомпенсировать «ход с жесткостью» самого счетчика. Некоторые из промышленных дозиметров учитывают также и спонтанную активность счетчика Гейгера.

То, что счетчик Гейгера является лавинным прибором, имеет и свои минусы - по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые счетчиком Гейгера под действием α-частиц, электронов, γ-квантов (в счетчике на все эти виды излучения реагирующем), ничем не различаются.
Сами частицы, их энергии совершенно исчезают в порождаемых ими лавинах-близнецах.

В принципе регулировать радиационную чувствительность счетчика Гейгера можно изменением напряжения питания в пределах от напряжения начала счета до выхода на плато: Uпит € . Но этот режим весьма неустойчив, и в сколько-нибудь серьезных случаях полагаться на него нельзя.

Стабильная регулировка чувствительности возможна лишь в трехэлектродном счетчике Гейгера, в котором от напряжения на управляющем электроде зависят конфигурация и объем пространства, в котором возможны лавинные вспышки. На рис. 6, а показана схема включения такого счетчика, а на рис. 6, б - зависимость его радиационной чувствительности от напряжения на управляющем электроде.



Рис. 8. Включение трехэлектродного счетчика Гейгера (а); зависимость его радиационной чувствительности от напряжения на управляющем электроде (б)

Однако трехэлектродные счетчики Гейгера широкого распространения не получили. Причина в генераторе Uynp. Электроника, учитывающая реальную радиационную чувствительность двухэлектродного счетчика Гейгера, оказалась проще, нежели этот высоковольтный источник.

В бытовых дозиметрических приборах быстродействие счетчика Гейгера не является сколько-нибудь лимитирующим фактором (человек должен обнаружить источник радиации до того, как это быстродействие ему потребуется). Поэтому нет необходимости включать многоанодный счетчик Гейгера так, как это обычно рекомендуют справочники (рис.).
Постоянная времени при прямом объединении даже всех десяти анодов счетчика СБТ10, самого многосекционного из отечественных, остается еще достаточно малой (R n Са = 15 10 6 10 5 10 -12 = 0,75 мс), чтобы практически никак не влиять на результат измерений даже в полях, тысячекратно превышающих уровень естественного радиационного фона.

Есть ли счетчики Гейгера, способные реагировать на α-излучение - одного из самых опасных для человека?

Оценим способность счетчиков, имеющих слюдяные окна (другие можно и не рассматривать), реагировать на α-излучение того же плутония-239 (Еа = 5,16 МэВ). Пробег в воздухе его α-частиц около 3,5 см. Слюда плотностью 2,8 г/см 3 (она плотнее воздуха примерно в 2200 раз) и толщиной 10 мкм (10 -3 см) эквивалентна воздушной «подушке» толщиной 2200 10 -3 = 2,2 см. То есть, счетчик со слюдяным окном 10-микронной толщины сможет обнаружить излучение плутония-239, если сблизится с ним практически вплотную. Во всяком случае, «зазор» между излучателем и счетчиком должен быть меньше 3,5 - 2,2 = 1,3 см.

Из счетчиков отечественного производства слюду примерно такой толщины имеют СБТ7 и СБТ11. Еще тоньше слюда в счетчике СБТ9 (4...5 мкм), но из-за маленького окна (0,2 см 2) его α-чувствительность очень невелика. Но - и это важно! - не равна нулю, как у многих других.

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В

Счетчик Гейгера (Гейгера-Мюллера) -- газоразрядный прибор для автоматического подсчёта числа попавших в него ионизирующих частиц. Представляет собой газонаполненный конденсатор, который пробивается при пролёте ионизирующей частицы через объём газа. Изобретён счетчик был в 1908 году Гансом Гейгером и усовершенствован Мюллером. Является самым распространенным детектором (датчиком) ионизирующего излучения. До сих пор ему, изобретенному в самом начале прошлого века для нужд зарождающейся ядерной физики, нет, как это ни странно, сколько-нибудь полноценной замены.

Дополнительная электронная схема обеспечивает счётчик питанием (как правило, не менее 300 В), обеспечивает, при необходимости, гашение разряда и подсчитывает количество разрядов через счётчик.

Счётчики Гейгера разделяются на несамогасящиеся и самогасящиеся (не требующие внешней схемы прекращения разряда).

Чувствительность счётчика определяется составом газа, его объёмом, а также материалом и толщиной его стенок.

Наиболее часто в приборах применяются счетчики с рабочим напряжением порядка 400 В, такие как:

1. «СБМ-20» (по размерам Ї чуть толще карандаша).

2. «СБМ-21» (оба со стальными корпусами, пригодные для измерения бета- и гамма-излучения).

3. «СИ-8Б» (со слюдяным окном в корпусе, пригоден для измерения бета-излучения).

Цилиндрический счётчик Гейгера-Мюллера состоит из металлической трубки или металлизированной изнутри стеклянной трубки, и тонкой металлической нити, натянутой по оси цилиндра. Нить служит анодом, трубка -- катодом. Трубка заполняется разреженным газом, в большинстве случаев используют благородные газы -- аргон и неон. Между катодом и анодом создается напряжение порядка 400 В. Для большинства счетчиков существует так называемое плато, которое лежит приблизительно от 360 до 460 В, в этом диапазоне небольшие колебания напряжения не влияют на скорость счета.

Работа счетчика основана на ударной ионизации. Гамма-кванты, испускаемые радиоактивным изотопом, попадая на стенки счетчика, выбивают из него электроны. Электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на сопротивлении образуется импульс напряжения, который подается в регистрирующее устройство. Чтобы счётчик смог регистрировать следующую попавшую в него частицу, лавинный разряд нужно погасить. Это происходит автоматически. В момент появления импульса тока на сопротивлении возникает большое падение напряжения, поэтому напряжение между анодом и катодом резко уменьшается -- настолько, что разряд прекращается, и счетчик снова готов к работе.

Важной характеристикой счётчика является его эффективность. Не все Гама-фотоны, попавшие на счетчик, дадут вторичные электроны и будут зарегистрированы, так как акты взаимодействия гамма-лучей с веществом сравнительно редки, и часть вторичных электронов поглощается в стенках прибора, не достигнув газового объема.

Эффективность счётчика зависит от толщины стенок счётчика, их материала и энергии гамма-излучения. Наибольшей эффективностью обладают счётчики, стенки которых сделаны из материала с большим атомным номером Z, так как при этом увеличивается образование вторичных электронов.

Примечание. Атомный номер, Z Ї это порядковый номер химического элемента в периодической системе элементов Д. И. Менделеева. Атомный номер равен числу протонов в атомном ядре, которое, в свою очередь, равно числу электронов в электронной оболочке соответствующего нейтрального атома. Заряд ядра равен Ze, где е -- положительный элементарный электрический заряд, равный по абсолютному значению заряду электрона.

Кроме того, стенки счётчика должны быть достаточно толстыми. Толщина стенки счётчика выбирается из условия её равенства длине свободного пробега вторичных электронов в материале стенки. При большой толщине стенки вторичные электроны не пройдут в рабочий объем счётчика и возникновения импульса тока не произойдет. СГ имеет свои минусы Ї по реакции такого прибора нельзя судить о первопричине его возбуждения. Выходные импульсы, генерируемые СГ под действием альфа-частиц, электронов, гамма-квантов ничем не различаются.

Приведем некоторые паспортные данные, на примере счетчика СБМ 20.

· Номинальное рабочее напряжение Ї 400 В.

· Протяжность плато счетной характеристики Ї не менее 100 В.

· Изменение чувствительности счетчика в течение всего ресурса не превышает.

· Собственный фон Ї не более 1 имп/сек.

· Амплитуда импульса Ї не менее 50 В.

· Диапазон регистрируемых мощностей Ї (0,001…10) мкр/сек.

· Чувствительность к излучению Ї 460 имп/сек.

Рис. 1.1 Ї Зависимость скорости счета от напряжения питания

Рис. 1.2 Ї Зависимость скорости счета от уровня радиации



Понравилась статья? Поделитесь с друзьями!