Полимер - что это такое? Производство полимеров. Что такое полимеры

Полимеры, или макромолекулы - это очень большие молекулы, образованные связями многих молекул малого размера, которые называются составными звеньями, или мономерами. Молекулы настолько велики, что их свойства не изменяются существенным образом при добавлении или удалении нескольких таких составных звеньев. Термин "полимерные материалы" является обобщающим. Он объединяет три обширных группы синтетических пластиков, а именно: полимеры; пластмассы и их морфологическую разновидность - полимерные композиционные материалы (ПКМ) или, как их еще называют, армированные пластики. Общее для перечисленных групп то, что их обязательной частью является полимерная составляющая, которая и определяет основные термодеформационные и технологические свойства материала. Полимерная составляющая представляет собой органическое высокомолекулярное вещество, полученное в результате химической реакции между молекулами исходных низкомолекулярных веществ - мономеров.

Полимерами принято называть высокомолекулярные вещества (гомополимеры) с введенными в них добавками, а именно стабилизаторами, ингибиторами, пластификаторами, смазками, антирадами и т. д. Физически полимеры являются гомофазными материалами, они сохраняют все присущие гомополимерам физико-химические особенности.

Пластмассами называются композиционные материалы на основе полимеров, содержащие дисперсные или коротковолокнистые наполнители, пигменты и иные сыпучие компоненты. Наполнители не образуют непрерывной фазы. Они (дисперсная среда) располагаются в полимерной матрице (дисперсионная среда). Физически пластмассы представляют собой гетерофазные материалы с изотропными (одинаковыми во всех направлениях) физическими макросвойствами.

Пластмассы могут быть разделены на две основные группы - термопластические и термореактивные. Термопластические - это те, которые после формирования могут быть расплавлены и снова сформованы; термореактивные, сформованные раз, уже не плавятся и не могут принять другую форму под воздействием температуры и давления. Почти все пластмассы, используемые в упаковках, относятся к термопластическим, например, полиэтилен и полипропилен (члены семейства полиолефинов), полистирол, поливинилхлорид, полиэтилентерефталат, найлон (капрон), поликарбонат, поливинилацетат, поливиниловый спирт и другие.

Пластмассы также можно располагать по категориям в зависимости от метода, который используется для их полимеризации, на полимеры, полученные присоединением к поликонденсацией. Полимеры, полученные присоединением, производятся с помощью механизма, который включает либо свободные радикалы, либо ионы, по которому малые молекулы быстро присоединяются к растущей цепи, без образования сопутствующих молекул. Поликонденсационные полимеры производятся с помощью реакции функциональных групп в молекулах друг с другом, так что постадийно образуется длинная цепь полимера, и обычно происходит образование низкомолекулярного сопутствующего продукта, например воды, во время каждой стадии реакции. Большинство упаковочных полимеров, включая полиолефины, поливинилхлорид и полистирол - это полимеры присоединения.

Химические и физические свойства пластиков обусловлены их химическим составом, средней молекулярной массой и распределением молекулярной массы, историей обработки (и использования), и наличием добавок.

Полимерные армированные материалы являются разновидностью пластмасс. Они отличаются тем, что в них используются не дисперсные, а армирующие, то есть усиливающие наполнители (волокна, ткани, ленты, войлок, монокристаллы), образующие в ПКМ самостоятельную непрерывную фазу. Отдельные разновидности таких ПКМ называют слоистыми пластиками. Такая морфология позволяет получить пластики с весьма высокими деформационно-прочностными, усталостными, электрофизическими, акустическими и иными целевыми характеристиками, соответствующими самым высоким современным требованиям.

Реакция полимеризации - это последовательное присоединение молекул ненасыщенных соединений друг к другу с образованием высокомолекулярного продукта - полимера. Молекулы алкена, вступающие в реакцию полимеризации, называются мономерами. Число элементарных звеньев, повторяющихся в макромолекуле, называется степенью полимеризации (обозначается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойствами. Так, полиэтилен с короткими цепями (n = 20) является жидкостью, обладающей смазочными свойствами. Полиэтилен с длиной цепи в 1500-2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать пленки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цели в 5-6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, например димеры, тримеры и т. д. Условия протекания реакций полимеризации весьма различные. В некоторых случаях необходимы катализаторы и высокое давление. Но главным фактором является строение молекулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения за счет разрыва кратных связей. Структурные формулы полимеров кратко записывают так: формулу элементарного звена заключают в скобки и справа внизу ставят букву п. Например, структурная формула полиэтилена (-СН2-СН2-)n. Легко заключить, что название полимера слагается из названия мономера и приставки поли-, например полиэтилен, поливинилхлорид, полистирол и т. д.

Полимеризация - это цепная реакция, и, для того чтобы она началась, необходимо активировать молекулы мономера с помощью так называемых инициаторов. Такими инициаторами реакции могут быть свободные радикалы или ионы (катионы, анионы). В зависимости от природы инициатора различают радикальный, катионный или анионный механизмы полимеризации.

Наиболее распространенными полимерами углеводородной природы являются полиэтилен и полипропилен.

Полиэтилен получают полимеризацией этилена: Полипропилен получают стереоспецифической полимеризацией пропилена (пропена). Стереоспецифическая полимеризация - это процесс получения полимера со строго упорядоченным пространственным строением. К полимеризации способны многие другие соединения - производные этилена, имеющие общую формулу СН2==СН-X, где Х - различные атомы или группы атомов.

Виды полимеров:

Полиолефины - это класс полимеров одинаковой химической природы (химическая формула -(СН2)-n) с разнообразным пространственным строением молекулярных цепей, включающий в себя полиэтилен и полипропилен. Кстати сказать, все углеводы, к примеру, природный газ, сахар, парафин и дерево имеют схожее химическое строение. Всего в мире ежегодно производиться 150 млн. т. полимеров, а полеолефины составляют примерно 60% от этого количества. В будущем полиолефины будут окружать нас в гораздо большей степени, чем сегодня, поэтому полезно присмотреться к ним повнимательнее.

Комплекс свойств полиолефинов, в том числе такие, как стойкость к ультрафиолету, окислителям, к разрыву, протыканию, усадке при нагреве и к раздиру, меняется в очень широких пределах в зависимости от степени ориентационной вытяжки молекул в процессе получения полимерных материалов и изделий.

Особенно следует подчеркнуть, что полеолефины экологически чище большинства применяемых человеком материалов. При производстве, транспортировке и обработке стекла, дерева и бумаги, бетона и металла используется много энергии, при выработке которой неизбежно загрязняется окружающая среда. При утилизации традиционных материалов также выделяются вредные вещества и затрачивается энергия. Полиолефины производятся и утилизуются без выделения вредных веществ и при минимальных затаратах энергии, причем при сжигании полиолефинов выделяется большое количество чистого тепла с побочными продуктами в виде водяного пара и углекислого газа. Полиэтилен

Около 60% всех пластиков, используемых для упаковки- это полиэтилен, главным образом благодаря его низкой стоимости, но также благодаря его отличным свойствам для многих областей применения. Полиэтилен высокой плотности (ПЭНД - низкого давления) имеет самую простую структуру из всех пластиков, он состоит из повторяющихся звеньев этилена. -(CH2CH2)n- полиэтилен высокой плотности. Полиэтилен низкой плотности (ПЭВД - высокого давления) имеют ту же химическую формулу, но отличается тем, что его структура разветвленная. -(CH2CHR) n- полиэтилен низкой плотности Где R может быть -H, -(CH2)nCH3, или более сложной структурой с вторичным разветвлением.

Полиэтилен, благодаря своему простому химическому строению, легко складывается в кристаллическую решетку, и, следовательно, имеет тенденцию к высокой степени кристалличности. Разветвление цепи препятствует этой способности к кристаллизации, что приводит к меньшему числу молекул на единицу объема, и, следовательно, меньшей плотности.

ПЭВД - полиэтилен высокого давления. Пластичен, слегка матовый, воскообразный на ощупь, перерабатывается методом экструзии в рукавную пленку с раздувом или в плоскую пленку через плоскощелевую головку и охлаждаемый валик. Пленка из ПЭВД прочна при растяжении и сжатии, стойка к удару и раздиру, прочна при низких температурах. Имеет особенность - довольно низкая температура размягчения (около 100 градусов Цельсия).

ПЭНД - полиэтилен низкого давления. Пленка из ПЭНД - жесткая, прочная, менее воскообразная на ощупь по сравнению с пленками ПЭВД. Получается экструзией рукава с раздувом или экструзией плоского рукава. Температура размягчения 121°С позволяет производить стерилизацию паром. Морозостойкость этих пленок такая же, как и у пленок из ПЭВД. Устойчивость к растяжению и сжатию - высокая, а сопротивление к удару и раздиру меньше, чем у пленок из ПЭВД. Пленки из ПЭНД - это прекрасная преграда влаге. Стойки к жирам, маслам. "Шуршащий" пакет-майка ("шуршавчик"), в который вы упаковываете покупки, изготовлен именно из ПЭНД.

Существует два основных типа ПЭНД. Более "старый" тип, произведенный первым в 1930-х годах, полимеризуется при высоких температурах и давлениях, условиях, которые достаточно энергетичны, чтобы обеспечить заметную встречаемость реакций по цепному механизму, которые приводят к образованию разветвления, как с длинными, так и с короткими цепями. Этот тип ПЭНД иногда называется полиэтиленом высокого давления (ПВД, ВД-ПЭНД, из-за высокого давления), если есть необходимость отличать его от линейного полиэтилена низкого давления, более "молодого" типа ПЭВД. При комнатной температуры полиэтилен - довольно мягкий и гибкий материал. Он хорошо сохраняет эту гибкость в условиях холода, так что применим в упаковке замороженных пищевых продуктов. Однако при повышенных температурах, таких как 100 °С, он становится слишком мягким для ряда применений. ПЭНД отличается более высокой хрупкостью и температурой размягчения, чем ПЭВД, но все же не является подходящим контейнеров горячего заполнения.

Около 30% всех пластиков, используемых для упаковки- это ПЭНД. Это наиболее широко используемый пластик для бутылок, из-за его низкой стоимости, простоты формования, и отличных эксплуатационных качеств, для многих областей применения. В его естественной форме ПЭНД имеет молочно-белый, полупрозрачный вид, и таким образом, не подходит для областей применения, где требуется исключительная прозрачность. Один недостаток использования ПЭНД в некоторых из областей применения- его тенденция к растрескиванию под напряжением при взаимодействии внешней среды, определяемая как разрушение пластикового контейнера при условиях одновременного напряжения и соприкосновения с продуктом, что в отдельности не приводит к разрушению. Растрескивание под напряжением при взаимодействии внешней срды в полиэтилене соотносится с кристалличностью полимера.

ПЭВД- это наиболее широко применяемый упаковочный полимер, соответствующий примерно одной трети всех упаковочных пластиков. Из-за его низкой кристалличности, это более мягкий, более гибкий материал, чем ПЭНД. Это предпочитаемый материал для пленок и сумок, из-за его низкой стоимости. ПЭВД отличается лучшей прозрачностью, чем ПЭНД, но все же не обладает кристальной чистотой, которая желательна для некоторых областей применения упаковок.

ПП - полипропилен. Прекрасная прозрачность (при быстром охлаждении в процессе формообразования), высокая температура плавления, химическая и водостойкость. ПП пропускает водяные пары, что делает его незаменимым для "противозапотевающей" упаковки продуктов питания (хлеба, зелени, бакалеи), а также в строительстве для гидро-ветроизоляции. ПП чувствителен к кислороду и окислителям. Перерабатывается методом экструзии с раздувом или через плоскощелевую головку с поливом на барабан или охлаждением в водяной бане. Имеет хорошую прозрачность и блеск, высокую химическую стойкость, особенно к маслам и жирам, не растрескивается под воздействием окружающей среды.

ПВХ - поливинилхлорид. В чистом виде применяется редко из-за хрупкости и неэлостичности. Недорог. Может перерабатываться в пленку методом экструзии с раздувом, либо плоскощелевой экструзии. Расплав высоковязкий. ПВХ термически нестабилен и коррозионно активен. При перегреве и горении выделяет высокотоксичное соединение хлора - диоксин. Широко распространился в 60-70е годы. Вытесняется более экологичным полипропиленом.

Идентификация полимеров

У потребителей полимерных пленок очень часто возникает практическая задача по распознаванию природы полимерных материалов, из которых они изготовлены. Основные свойства полимерных материалов, как хорошо известно, определяются составом и структурой их макромолекулярных цепей. Отсюда ясно, что для идентификации полимерных пленок в первом приближении может быть достаточной оценка функциональных групп, входящих в состав макромолекул. Некоторые полимеры благодаря наличию гидроксильных групп (-ОН) тяготеют к молекулам воды. Это объясняет высокую гигроскопичность, например, целлюлозных пленок и заметное изменение их эксплуатационных характеристик при увлажнении. В других полимерах (полиэтилентерефталат, полиэтилены, полипропилен и т.п.) такие группы отсутствуют вообще, что объясняет их достаточно хорошую водостойкость.

Наличие тех или иных функциональных групп в полимере может быть определено на основе существующих и научно обоснованных инструментальных методов исследования. Однако, практическая реализация этих методов всегда сопряжена с относительно большими временными затратами и обусловлена наличием соответствующих видов достаточно дорогостоящей испытательной аппаратуры, требующей соответствующей квалификации для ее использования. Вместе с тем, существуют достаточно простые и "быстрые" практические способы распознавания природы полимерных пленок. Эти способы основаны на том, что полимерные пленки из различных полимерных материалов отличаются друг от друга по своим внешним признакам, физико-механическим свойствам, а также по отношению к нагреванию, характеру их горения и растворимости в органических и неорганических растворителях.

Во многих случаях природу полимерных материалов, из которых изготовлены полимерные пленки, можно установить по внешним признакам, при изучении которых особое внимание следует обратить на следующие особенности: состояние поверхности, цвет, блеск, прозрачность, жесткость и эластичность, стойкость к раздиру и др. Например, неориентированные пленки из полиэтиленов, полипропилена и поливинилхлорида легко растягиваются. Пленки из полиамида, ацетата целлюлозы, полистирола, ориентированных полиэтиленов, полипропилена, поливинилхлорида растягиваются плохо. Пленки из ацетата целлюлозы нестойки к раздиру, легко расщепляются в направлении, перпендикулярном их ориентации, а также шуршат при их сминании. Более стойкие к раздиру полиамидные и лавсановые (полиэтилентерефталатные) пленки, которые также шуршат при сминании. В то же время пленки из полиэтилена низкой плотности, пластифицированного поливинилхлорида не шуршат при сминании и обладают высокой стойкостью к раздиру. Результаты изучения внешних признаков исследуемой полимерной пленки следует сравнить с характерными признаками, приведенными в табл. 1, после чего уже можно сделать некоторые предварительные выводы.

Таблица 1. Внешние признаки

Вид полимера

Механические признаки

Состояние поверхности на ощупь

Цвет

Прозрачность

Блеск

Мягкая, эластичная, стойкая к раздиру

Мягкая, гладкая

Бесцветная

Прозрачная

Слегка маслянистая, гладкая, сладошуршащая

Бесцветная

Полупрозрачная

Жестковатая, слегка эластичная, стойкая к раздиру

Сухая, гладкая

Бесцветная

Полупрозрачная или прозрачная

Жестковатая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Мягкая, стойкая к раздиру

Сухая, гладкая

Бесцветная

Прозрачная

Жесткая, стойкая к раздиру

Бесцветная

Прозрачная

Сухая, гладкая

Бесцветная или светло-желтая

Полупрозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная или с голубоватым оттенком

Прозрачная

Жесткая, слабо стойкая к раздиру

Сухая, гладкая, сильно шуршащая

Бесцветная, с желтоватым или голубоватым оттенком

Высокопрозрачная

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная

Целлофан

Жесткая, не стойкая к раздиру

Сухая, гладкая

Бесцветная

Высокопрозрачная


Однако, как нетрудно уяснить из анализа данных, приведенных в табл. 2, не всегда по внешним признакам можно однозначно установит природу полимера, из которого изготовлена пленка. В этом случае, необходимо попытаться количественно оценить какие-нибудь физико-механические характеристики имеющегося образца полимерной пленки. Как видно, например, из данных, приведенных в табл. 2, плотность некоторых полимерных материалов (ПЭНП, ПЭВП, ПП) меньше единицы, а, следовательно, образцы этих пленок должны "плавать" в воде. С тем, чтобы уточнить вид полимерного материала, из которого изготовлена пленка, следует определить плотность имеющегося образца путем измерения его веса и вычисления или измерения его объема. Уточнению природы полимерных материалов способствуют и экспериментальные данные по таким их физико-механическим характеристикам как предел прочности и относительное удлинение при одноосном растяжении, а также температура плавления (табл. 2). Кроме того, как видно из анализа данных, приведенных в табл. 2, проницаемость полимерных пленок по отношению к различным средам также существенно зависит от вида материала, из которого они изготовлены.

Таблица 2. Физико-механические характеристики при 20°C

Вид полимеров

Плотность кг/м 3

Прочность при разрыве, МПа

Относительное удлинение при разрыве, %

Проницаемость по водяным парам, г/м 2 за 24 часа

Проницаемость по кислоробу, см 3 /(м 2 хатм) за 24 часа

Проницаемость по СО 2 , см 3 /(м 2 хатм) за 24 часа

Температура плавления, 0 С

Целлофан


Помимо отличительных особенностей в физико-механических характеристиках следует отметить и существующие различия в характерных признаках различных полимеров при их горении. Этот факт позволяет использовать на практике так называемый термический метод идентификации полимерных пленок. Он заключается в том, что образец пленки поджигают и выдерживают в открытом пламени в течение 5-10 секунд, фиксируя при этом следующие свойства: способность к горению и его характер, цвет и характер пламени, запах продуктов горения и др. Характерные признаки горения наиболее отчетливо наблюдаются в момент поджигания образцов. Для установления вида полимерного материала, из которого изготовлена пленка, необходимо сравнить результаты проведенного испытания с данными о характерных особенностях поведения полимеров при горении, приведенными в табл. 3.

Таблица 3. Характеристики горения. Химическая стойкость

Вид полимера

Горючесть

Окраска пламени

Запах продуктов горения

Хим. стойкость к кислотам

Хим. стойкость к щелочам

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Горит в пламени и при удалении

Внутри синеватая, без копоти

Горящего парафина

Отличная

Зеленоватая с копотью

Хдористого водорода

Трудно воспламеняется и гаснет

Зеленоватая с копотью

Хлористого водорода

Отличная

Отличная

Загорается и горит вне пламени

Желтоватая с сильной копотью

Сладковатый, неприятный

Отличная

Горит и самозатухает

Голубая, желтоватая по краям

Жженого рога или пера

Трудно воспламеняется и гаснет

Светящаяся

Сладковатый

Отличная

Отличная

Трудно воспламеняется и гаснет

Желтоватая с копотью

Жженой бумаги

Горит в пламени

Искрящаяся

Уксусной кислоты

Целлофан

Горит в пламени

Жженой бумаги


Как видно из данных, приведенных в табл. 3, по характеру горения и запаху продуктов горения полиолефины (полиэтилены и полипропилен) напоминают парафин. Это вполне понятно, поскольку элементарный химический состав этих веществ один и тот же. Отсюда возникает сложность в различении полиэтиленов и полипропилена. Однако при определенном навыке можно отличить полипропилен по более резким запахам продуктов горения с оттенками жженой резины или горящего сургуча.

Таким образом, результаты комплексной оценки отдельных свойств полимерных пленок в соответствии с изложенными выше методами позволяют в большинстве случаев достаточно надежно установить вид полимерного материала, из которого изготовлены исследованные образцы. При возникающих затруднениях в определении природы полимерных материалов, из которых изготовлены пленки, необходимо провести дополнительные исследования их свойств химическими методами. Для этого образцы могут быть подвергнуты термическому разложению (пиролизу), при этом в продуктах деструкции определяется наличие характерных атомов (азота, хлора, кремния и т.п.) или групп атомов (фенола, нитрогрупп и т.п.), склонных к специфическим реакциям, в результате которых обнаруживается вполне определенный индикаторный эффект. Изложенные выше практические методы определения вида полимерных материалов, из которых изготовлены полимерные пленки, носят в известной степени субъективный характер, а, следовательно, не могут гарантировать их сто процентной идентификации. Если такая необходимость все же возникает, то следует воспользоваться услугами специальных испытательных лабораторий, компетентность которых подтверждена соответствующими аттестационными документами.

Показатель текучести расплава

Показатель текучести расплава полимерного материала это масса полимера в граммах, выдавливаемая через капилляр при определенной температуре и определенном перепаде давления за 10 минут. Определение величины показателя текучести расплава производят на специальных приборах, называемых капиллярными вискозиметрами. При этом размеры капилляра стандартизованы: длина 8,000±0,025 мм; диаметр 2,095±0,005 мм; внутренний диаметр цилиндра вискозиметра составляет 9,54±0,016 мм. Не целочисленные значения размеров капилляров связанны с тем, что впервые методика определения показателя текучести расплава появилась в странах с английской системой мер. Условия, рекомендуемые для определения показателя текучести расплава, регламентируются соответствующими стандартами. ГОСТ 11645-65 рекомендует нагрузки 2,16 кг, 5 кг и 10 кг и температуры, кратные 10°C. ASTM 1238-62T (США) рекомендует температуры от 125°C до 275°C и нагрузки от 0,325 кг до 21,6 кг. Наиболее часто показатель текучести расплава определяют при температуре 190°C и нагрузке 2,16 кг.

Величина показателя текучести для различных полимерных материалов определяется при различных нагрузках и температурах. Поэтому надо иметь в виду, что абсолютные величины показателя текучести сравнимы лишь для одного и того же материала. Так, например, можно сравнивать величину показателя текучести расплава полиэтилена низкой плотности различных марок. Сравнение же величин показателей текучести полиэтилена высокой и низкой плотности не дает возможности непосредственно сопоставить текучесть обоих материалов. Поскольку первый определяется при нагрузке в 5 кг, а второй при нагрузке в 2,16 кг.

Следует отметить, что вязкость расплавов полимеров существенно зависит от приложенной нагрузки. Так как показатель текучести того или иного полимерного материала измеряют лишь при одном значении нагрузки, то этот показатель характеризует только одну точку на всей кривой течения в области относительно низких напряжений сдвига. Поэтому полимеры, несколько различающиеся по разветвленности макромолекул или по молекулярной массе, но с одинаковым показателем текучести расплава, могут вести себя по-разному в зависимости от условий переработки. Однако, несмотря на это, по показателю текучести расплава для многих полимеров устанавливают границы рекомендуемых технологических параметров процесса переработки. Значительное распространение этого метода объясняется его быстротой и доступностью. Экструзионные процессы производства пленок требуют высоких вязкостей расплава, в связи с этим применяются марки сырья с низким показателем текучести расплава.

По материалам компании «НПЛ Пластик»

Полимерные материалы - это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.

Виды полимеров

Особенностью молекул данного материала является большая которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные. К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.

Полимеризация

Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации - это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.

Поликонденсация

Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.

Полиприсоединение

Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение и получение полиуретанов.

Классификация полимеров

По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них слюда, асбест, керамика и др.) не содержат атомарный углерод. Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы - это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.

Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.

Структура полимеров

Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.

Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.

Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи. Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.

А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.

Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.

Фазовый состав полимеров

Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.

В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.

Термореактивные полимеры

Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.

Термопластичные полимеры

Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым. Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.

Химические свойства

Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.

Физические свойства

Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.

Механические свойства

Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).

Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1-10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1-10 МПа (резины). Закономерности и механизм разрушения тех и других различны.

Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.

Полимерные материалы для пола

Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.

Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.

Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.

Материалы, получаемые на основе полимеров . На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту или методом каландрования" полимеров. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Лаки - растворы пленкообразующих веществ в органических растворителях. Кроме полимеров лаки содержат вещества, повышающие пластичность (пластификаторы), растворимые красители, отвердители и др. Применяются для электроизоляционных покрытий, а также в качестве основы грунтовочного материала и лакокрасочных эмалей.

Клеи - композиции, способные соединять различные материалы вследствие образования прочных связей между их поверхностями и клеевой прослойкой. Синтетические органические клеи составляются на основе мономеров, олигомеров, полимеров или их смесей. В состав композиции входят отвердители, наполнители, пластификаторы и др.

Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи - в результате вулканизации.

В качестве полимерной основы термореактивных клеев служат фенол- и мочевино-формальдегидные и эпоксидные смолы, полиуретаны, полиэфиры и другие полимеры, термопластичных клеев - полиакрилы, полиамиды, поливинилацетали, поливинилхлорид и другие полимеры. Прочность клеевого слоя например, фенолоформальдегидных клеев (БФ, ВК) при 20 °С при сдвиге лежит в пределах 15 до 20 МПа, эпоксидных - до 36 МПа.

Пластмассы - это материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации - в стеклообразном. Все пластмассы подразделяются на реактопласты и термопласты. При формовании реактопластов происходит необратимая реакция отвердевания, заключающаяся в образовании сетчатой структуры. К реактопластам относятся материалы на основе фенолоформальдегидных, мочевиноформальдегидных, эпоксидных и других смол. Термопласты способны многократно переходить в вязкотекучее состояние при нагревании и стеклообразное - при охлаждении. К термопластам относятся материалы на основе полиэтилена, политетрафторэтилена, полипропилена, поливинилхлорида, полистирола, полиамидов и других полимеров.

Кроме полимеров в состав пластмасс входят пластификаторы, красители и наполнители. Пластификаторы, например, диоктилфталат, дибутилсебацинат, хлорированный парафин, снижают температуру стеклования и повышают текучесть полимера. Антиоксиданты замедляют деструкцию полимеров. Наполнители улучшают физико-механические свойства полимеров. В качестве наполнителей применяют порошки (графит, сажа, мел, металл и т.д.), бумагу, ткань. Особую группу пластмасс составляют композиты.

Композиционные материалы (композиты) - состоят из основы (органической, полимерной, углеродной, металлической, керамической), армированной наполнителем, в виде высокопрочных волокон или нитевидных кристаллов. В качестве основы используются синтетические смолы (алкидные, фенолоформальде-гидные, эпоксидные и др.) и полимеры (полиамиды, фторопласты, силиконы и др.).

Армирующие волокна и кристаллы могут быть металлическими, полимерными, неорганическими (например, стеклянными, карбидными, нитридными, борными). Армирующие наполнители в значительной степени определяют механические, теплофизические и электрические свойства полимеров. Многие композиционные полимерные материалы по прочности не уступают металлам. Композиты на основе полимеров, армированных стекловолокном (стеклопластики), обладают высокой механической прочностью (прочностью при разрыве 1300-2500 МПа) и хорошими электроизоляционными свойствами. Композиты на основе полимеров, армированных углеродными волокнами (углепластики), сочетают высокую прочность и вибропрочность с повышенной теплопроводностью и химической стойкостью. Боропластики (наполнители - борные волокна) имеют высокую прочность, твердость и низкую ползучесть.

Композиты на основе полимеров используются как конструкционные, электро- и теплоизоляционные, коррозионностойкие, антифрикционные материалы в автомобильной, станкостроительной, электротехнической, авиационной, радиотехнической, горнорудной промышленности, космической технике, химическом машиностроении и строительстве.

Редокситы. Широкое применение получили полимеры с окислительно-восстановительными свойствами - редокситы (с редокс-группами или редоксиониты).

Применение полимеров. В настоящее время широко применяется большое число различных полимеров. Физические и химические свойства некоторых термопластов приведены в табл. 14.2 и 14.3.

Полиэтилен [-СН2-СН2-]n - термопласт, получаемый методом радикальной полимеризации при температуре до 320 °С и давлении 120-320 МПа (полиэтилен высокого давления) или при давлении до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен химически стоек во многих средах, но под действием окислителей стареет (табл. 14.3). Хороший диэлектрик (см. табл. 14.2), может эксплуатироваться в пределах температур от -20 до +100 °С. Облучение может повысить теплостойкость полимера. Из полиэтилена изготавливают трубы, электротехнические изделия, детали радиоаппаратуры, изоляционные пленки и оболочки кабелей (высокочастотных, телефонных, силовых), пленки, упаковочный материал, заменители стеклотары.

Полипропилен [-СН(СН3)-СН2-]n - кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120-140 °С), чем полиэтилен. Имеет высокую механическую прочность (см. табл. 14.2), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Термопласт, получаемый радикальной полимеризацией стирола.

Полимер стоек к действию окислителей, но неустойчив к воздействию сильных кислот, он растворяется в ароматических растворителях (см. табл. 14.3).

Таблица 14.2. Физические свойства некоторых полимеров

Свойство

Полиэтилен

Полипропилен

Полисти-рол

Поливини-хлорид

Полимети-метакрилат

Политетра-фторэтилен

Плотность, г/см3

Температура стеклования, °С

Предел прочности при растяжении, МПа

Относительное удлинение при разрыве, %

Удельное электрическое сопротивление, Ом×см

Диэлектрическая проницаемость

* Температура плавления.

Таблица 14.3 Химические свойства некоторых полимеров

Свойство

Полимеры

Полиэти-лен

Полистирол

Поливини-хлорид

Полимети-метакрилат

Силиконы

Фторо-пласты

Устойчивость к дейсвию:

а) растворов кислот

б) растворов щелочей

в) окислителей

Растворимость в углеводородах

а) алифатических

б) ароматических

Растворители

Набухает

Растворяется при нагреве

Бензол при нагревании

Стоек в слабых растворах

Стоек в слабых растворах

Набухает

Растворяется

Спирты, эфиры, стирол

Не растворяется

Не растворяется

Тетрагидрофуран, дихлорэтан

Стоек в мини-ральных кислотах

Растворим

Дихлорэтан, кетоны

Не стойки

Растворяются

Растворимы

Эфиры, хлороугле-водороды

Растворы некоторых комлексов

Полистирол обладает высокой механической прочностью и диэлектрическими свойствами (см. табл. 14.2) и используется как высококачественный электроизоляционный, а также конструкционный и декоративно-отделочный материал в приборостроении, электротехнике, радиотехнике, бытовой технике. Гибкий эластичный полистирол, получаемый вытяжкой в горячем состоянии, применяется для оболочек кабелей и проводов. На основе полистирола также выпускают пенопласты.

Поливинилхлорид [-CH2-CHCl-]n - термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей (см. табл. 14.3). Растворим в циклогексаноне, тетрагидрофуране, ограничено - в бензоле и ацетоне. Трудногорюч, механически прочен (см. табл. 14.2). Диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Политетрафторэтилен (фторопласт)[-CF2-CF2-]n - термопласт, получаемый методом радикальной полимеризации тетрафторэ-тилена. Обладает исключительной химической стойкостью к кислотам, щелочам и окислителям. Прекрасный диэлектрик. Имеет очень широкие температурные пределы эксплуатации (от -270 до +260 °С). При 400 °С разлагается с выделением фтора, не смачивается водой. Фторопласт используется как химически стойкий конструкционный материал в химической промышленности. Как лучший диэлектрик применяется в условиях, когда требуется сочетание электроизоляционных свойств с химической стойкостью. Кроме того, его используют для нанесения антифрикционных, гидрофобных и защитных покрытий, покрытий сковородок.

Полиметилметакрилат (плексиглаз)

Термопласт, получаемый методом полимеризации метилметакрилата. Механически прочен (см. табл. 14.2), стоек к действию кислот, атмосферостоек. Растворяется в дихлорэтане, ароматических углеводородах, кетонах, сложных эфирах. Бесцветен и оптически прозрачен. Применяется в электротехнике, как конструкционный материал, а также как основа клеев.

Полиамиды - термопласты, содержащие в основной цепи амидогруппу -NHCO-, например поли-e-капрон [-NH-(CH2)5-CO-]n, полигексаметиленадипинамид (найлон) [-NH-(CH2)5-NH-CO-(CH2)4-CO-]n, полидодеканамид [-NH-(CH2)11-CO-]n и др. Их получают как поликонденсацией, так и полимеризацией. Плотность полимеров 1,0¸1,3 г/см3. Характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами. Устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Полиуретаны - термопласты, содержащие в основной цепи группы -NH(CO)O-, а также эфирные, карбаматные и др. Получают взаимодействием изоциантов (соединений, содержащих одну или несколько NCO-гpyпп) с полиспиртами, например с гликолями и глицерином. Устойчивы к действию разбавленных минеральных кислот и щелочей, масел и алифатических углеводородов.

Выпускаются в виде пенополиуретанов (поролонов), эластомеров, входят в составы лаков, клеев, герметиков. Используются для тепло- и электроизоляции, в качестве фильтров и упаковочного материала, для изготовления обуви, искусственной кожи, резинотехнических изделий. Полиэфиры -полимеры с общей формулой HO[-R-O-]nH или [-OC-R-COO-R"-O-]n. Получают либо полимеризацией циклических оксидов, например этиленоксида, лактонов (сложных эфиров окси-кислот), либо поликонденсацией гликолей, диэфиров и других соединений. Алифатические полиэфиры устойчивы к действию растворов щелочей, ароматические - также к действию растворов минеральных кислот и солей.

Применяются в производстве волокон, лаков и эмалей, пленок, коагулянтов и флотореагентов, компонентов гидравлических жидкостей и др.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (СК), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают СК общего и специального назначения. К СК общего назначения относят бутадиеновый [-СН2-СН=СН-СН2-]n и бутадиенстирольный [-СН2-СН=СН-СН2-]n-[-СН2-СН(С6Н5)-]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из СК специального назначения, кроме эластичности характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиеннитрильный СК [-CH2-CH=CH-CH2-]n-[-CH2-CH(CN)-]n), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый СК [-СН2-С(Сl)=СН-СН2-]n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-C(СН3)2-CH2-]n –[-CH2C(CH3)=СН-СН2-]m.

К наиболее применяемым относятся бутадиенстирольный (более 40%), бутадиеновый (13%), изопреновый (7%), хлоропреновый (5%) каучуки и бутилкаучук (5%). Основная доля каучуков (60-70%) идет на производство шин, около 4% - на изготовление обуви.

Кремнийорганические полимеры (силиконы) -содержат атомы кремния в элементарных звеньях макромолекул, например:


Большой вклад в разработку кремнийорганических полимеров внес российский ученый К.А.Андрианов. Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность. Силиконы не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях (см. табл. 14.3). Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R2)-O-]n, например диметилсилоксановый и метил винил сил оксановый имеют плотность 0,96-0,98 г/см3, температуру стеклования 130°С. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300°С, обладают атмосферостойкостью, высокими электроизоляционными свойствами (r = 1015-1016 Ом×см). Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Феноло- и аминоформальдегидные смолы получают поликонденсацией формальдегида с фенолом или аминами (см. §14.2). Это термореактивные полимеры, у которых в результате образования поперечных связей образуется сетчатая пространственная структура, которую невозможно превратить в линейную структуру, т.е. процесс идет необратимо. Их используют как основу клеев, лаков, ионитов, пластмасс.

Пластмассы на основе фенолоформальдегидных смол получили название фенопластов, на основе мочевино-формальдегидных смол -аминопластов. Наполнителями фенопластов и аминопластов служит бумага или картон (гетинакс), ткань (текстолит), древесина, кварцевая и слюдяная мука и др. Фенопласты стойки к действию воды, растворов кислот, солей и оснований, органических растворителей, трудногорючи, атмосферостойки и являются хорошими диэлектриками. Используются в производстве печатных плат, корпусов электро- и радиотехнических изделий, фольгированных диэлектриков. Аминопласты характеризуются высокими диэлектрическими и физико-механическими свойствами, устойчивы к действию света и УФ-лучей, трудногорючи, стойки к действию слабых кислот и оснований и многих растворителей. Они могут быть окрашены в любые цвета. Применяются для изготовления электротехнических изделий (корпусов приборо

Полимерные материалы (пластмассы, пластики) представляют собой, как правило, затвердевшие композиционные составы, связующим в которых служат полимеры, олигомеры. Широко распространенное название «пластмассы» (что не совсем корректно) они получили за то, что при переработке в изделия находятся в пластическом (текучем) состоянии. Поэтому научно обоснованные названия - «полимерные материалы», «композиционные материалы на основе полимеров».

Полимеры (от греч. poly - много, meres - части) - это высокомолекулярные химические соединения, молекулы которых состоят из огромного числа многократно повторяющихся элементарных звеньев одинаковой структуры. Такие молекулы называют макромолекулами. В зависимости от расположения в них атомов и атомных групп (элементарных звеньев) они могут иметь линейное (цеповидное), разветвленное, сетчатое и пространственное (трехмерное) строение, что и определяет их физико-механические и химические свойства. Образование этих молекул возможно благодаря тому, что атомы углерода легко и прочно соединяются друг с другом и со многими другими атомами.

Различают также формополимеры (предполимеры, преполимеры), которые представляют собой соединения, содержащие функциональные группы и способные участвовать в реакциях роста или сшивания полимерной цепи с образованием высокомолекулярных линейных и сетчатых полимеров. Прежде всего, это тоже жидкие продукты полиолов с избытком полиизоционатов или других соединений при производстве изделий из полиуретанов.

По происхождению полимеры могут быть природными, искусственными и синтетическими.

Природные полимеры - это в основном биополимеры - белковые вещества, крахмал, природные смолы (сосновая канифоль), целлюлоза, натуральный каучук, битум и др. Многие из них образуются в процессе биосинтеза в клетках живых и растительных организмов. Однако в промышленности в большинстве случаев используются искусственные и синтетические полимеры.

Основным сырьем для производства полимеров являются побочные продукты угольной и нефтяной промышленности, производства удобрений, природный газ, целлюлоза и другие вещества. Процесс образования таких макромолекул и в целом полимера вызывается воздействием на исходное вещество (мономер) потока световых лучей, электрических разрядов токов высокой частоты, нагреванием, давлением и т. п.

В зависимости от способа получения полимеров их можно подразделить на полимеризационные, поликонденсационные и модифицированные природные полимеры. Процесс получения полимеров путем последовательного присоединения звеньев мономера друг к другу в результате раскрытия кратных (ненасыщенных) связей называют реакцией полимеризации. В процессе этой реакции вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. При этом реакция не сопровождается отделением каких-либо низкомолекулярных побочных продуктов. Как мономер, так и полимер характеризуются одинаковым элементным составом. Реакцией полимеризации получают полиэтилен из этилена, полипропилен из пропилена, полиизобутилен из изобутилена и многие другие полимеры.

При реакции поликонденсации происходит перегруппировка атомов двух или нескольких мономеров и выделение из сферы реакции побочных низкомолекулярных продуктов (например, воды, спиртов или других низкомолекулярных веществ). Реакцией поликонденсации получают полиамиды, полиэфиры, эпоксидные, фенолоформальдегидные, кремнийорганические и другие синтетические полимеры, называемые еще смолами.

В зависимости от отношения к нагреванию и растворителям полимеры, как и материалы на их основе, делят на термопластичные и термореактивные.

Термопластичные полимеры (термопласты) при переработке в изделия могут многократно переходить из твердого агрегатного состояния в вязко-текучее (плавиться), а при охлаждении вновь отвердевать. Они имеют, как правило, не высокую температуру перехода в вязко-текучее состояние, хорошо перерабатываются литьем под давлением, экструзией и прессованием. Формообразование изделий из них является процессом физическим, который состоит в затвердевании жидкого или размягченного материала при его охлаждении и химических изменений не происходит. Большинство из термопластов способны также растворяться в соответствующих растворителях. Термопластичные полимеры имеют линейное или слегка разветвленное строение макромолекул. К ним относят отдельные разновидности полиэтилена, поливинилхлорид, фторопласты, полиуретаны, битумы и др.

К термореактивным (реактопластам) относят полимеры, переработка в изделия которых сопровождается химической реакцией образования сетчатого или трехмерного полимера (отверждением, сшивкой цепей) и переход из жидкого состояния в твердое, происходит необратимо. Отвержденное состояние их является термостабильным, и они теряют способность к повторному переходу в вязко-текучее состояние (например, фенолоальдегидные, полиэфирные, эпоксидные полимеры и др.).

Классификация и свойства полимерных материалов

Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) - органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты - стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) - пенополистирол, пенополиуретан и др.

В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.

Жесткие - это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.

Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных - превышать 2 000 кг/м3.

Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков - более 200 МПа, при растяжении - для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых - 276.414 МПа и более.

Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных - 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.

Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах - 350 °С.

Являясь углеводородными соединениями, многие полимерные материалы сгораемы или имеют низкую огнестойкость. К легковоспламеняемым и сгораемым с обильным выделением сажи относятся изделия на основе полиэтилена, полистирола, производных целлюлозы. Трудно сгораемыми являются изделия на основе поливинилхлорида, полиэфирные стеклопластики, фенопласты, которые при повышенной температуре лишь обугливаются. Негорючими являются полимерные материалы с большим содержанием хлора, фтора или кремния.

Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения - от 2 до 10 раз выше, чем у стали.

Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.

Полимерные материалы. Использование полимерных материалов в быту

Содержание

    Введение.

    Классификация полимерных материалов. Использование полимеров.

    Строение и химические свойства полимеров.

    Типы деструкции полимеров.

    Выделение токсичных продуктов полимерами под различными воздействиями и с течением времени.

Введение

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ - материалы на основе высокомолекулярных соединений; обычно многокомпонентные и многофазные. Полимерные материалы - важнейший класс современных материалов, широко используемых во всех отраслях техники и технологии, в сельском хозяйстве и в быту. Отличаются широкими возможностями регулирования состава, структуры и свойств. Основные достоинства полимерных материалов: низкая стоимость, сравнительная простота, высокая производительность, малая энергоемкость и малоотходность методов получения и переработки, невысокая плотность, высокая стойкость к агрессивным средам, атомным и радиационным воздействиям и ударным нагрузкам, низкая теплопроводность, высокие оптические, радио- и электротехнические. свойства, хорошие адгезионные свойства. Недостатки полимерных материалов: низкая тепло- и термостойкость, большое тепловое расширение, склонность к ползучести и релаксации напряжений; для многих полимерных материалов - горючесть.

Основные типы полимерных материалов:

Пластические массы и композиционные материалы (композиты), резины, лакокрасочные материалы и лакокрасочные покрытия, клеи, компаунды полимерные, герметики, полимербетон, волокнистые пленочные и листовые материалы (волокниты, ткани, нетканые материалы, пленки полимерные, кожа искусственная, бумага и т.п.).

По назначению полимерные материалы подразделяются на: 1.конструкционные общего назначения и функциональные - напр. фрикционные и антифрикционные,

2.тепло- и электроизоляционные,

3.электропроводящие,

4.термоиндикаторные,

5.пьезоэлектрические,

6.оптически активные,

7.магнитные,

8.фоторезисторные,

9.антикоррозионные.

По природе основной (полимерной) фазы (полимера связующего или пленкообразующего) полимерные материалы могут быть природными (натуральными) и химическими (искусственными, или синтетическими).

По характеру физических и химических превращений, протекающих в полимерной фазе на стадиях получения и переработки, полимерные материалы, как и пластические массы, подразделяются на термопластичные и термореактивные.

В производстве термореактивных полимерных материалов из природных полимеров наиболее широко используются производные целлюлозы, из синтетических - широкий класс карбо- и гетероцепных гомополимеров, статистических, чередующихся, блок- и привитых сополимеров, их смесей и сплавов.

В производстве термореактивных полимерных материалов наиболее широко используют мономеры, олигомеры, форполимеры, масла и смолы, содержащие ненасыщенные и циклические. группы, реагирующие без выделения низкомолекулярных веществ и со сравнительно небольшими объемными усадками, ненасыщенные поли- и олигоэфиры, эпоксидные олигомеры и смолы, олигоизоцианаты, бисмалеинимиды, спироциклич. мономеры и олигомеры и т.п. Их состав и структура, тип и количество отвердителя, сшивающего агента, инициатора и катализатора, ускорителя или ингибитора определяются типом полимерного материала (пластическая масса, армированный пластик, лакокрасочный материал, клей и т.п.) и требованиями, предъявляемыми к его технологии и эксплуатации свойствам.

В качестве полимерной фазы или самостоятельного полимерного материала широко используют макро- или микрогетерог. полимер-полимерные композиции (смеси и сплавы полимеров; блок-и привитые сополимеры, в т.ч. сетчатые, взаимопроникающие сетки; вспененные или пористые полимеры, напр. пенопласты. Среди них наиболее распространены дисперсно-эластифицированные системы, состоящие из непрерывной стеклообразной и дисперсной эластичной фаз, напр. полистирол ударопрочный, АБС-пластик, модифицированные каучуками отверждающиеся композиции, а также термоэластопласты, эластичные взаимопроникающие сетки и иономеры.

Для регулирования технологических и(или) эксплуатационных свойств полимерной фазы полимерных материалов в нее вводят на стадии синтеза полимера или создания материала химически инертные или активные модификаторы-растворители, пластификаторы, или мягчители, разбавители, загустители или смазки, структурообразователи, красители, антипирены, антиоксиданты, антиозонанты, противостарители, термо- и светостабилизаторы, антирады, наполнители и ПАВ; для получения пористых полимерных материалов вводят, кроме того, и порообразователи.

Структуру и свойства полимерных материалов регулируют не только изменением их состава и характера распределения компонентов и фаз, но и условиями термического и механического воздействия при формировании.

Способы и условия переработки полимерных материалов определяются типом материала (термопластичный или термореактивный) и его исходным состоянием, т.е. типом полуфабриката (плавкий порошок, гранулы, растворы или расплавы, дисперсии), а также видом наполнителей-нитей, жгутов, лент, тканей, бумаги, пленок и их сочетаний с полимерной фазой.

Строение и химические свойства полимеров

Особенности строения.

Слово "полимер" дословно означает - много сегментов (от греческого polusмного и terosчасти, сегменты).

Этот термин охватывает все вещества, молекулы которых построены из множества элементов, или звеньев. Эти элементы включают в себя как отдельные атомы так и (что чаще) небольшие группы атомов, соединенных химическими связями. Примера полимера с элементами, состоящими из элементарных атомов, служит так называемая "пластическая сера". Она получается при выливании расплава серы (при соответствующей температуре) в холодную воду. Структура полимерной серы можно представить в виде цепи атомов, связанных друг с другом химическими связями

В этом состоянии физические свойства серы иные, чем у обычной кристаллической или каменной серы, - они более типичны для каучукоподобных полимеров. Мягкая, очень эластичная и полупрозрачная, она не имеет в отличие от кристаллических веществ определенной точки плавления. При повышении температуры сера сначала размягчается, а затем течет как высоковязкая жидкость. Однако полимерная сера не стабильна и при комнатной температуре через несколько дней снова переходит в обычную порошкообразную или кристаллическую форму.

Для большинства полимеров повторяющимся элементом структуры являются небольшие группы атомов, соединенных определенным образом. Один из наиболее простых с точки зрения химического строения полимеров - полиэтилен имеет в качестве повторяющегося элемента группу CH2.

Исходная молекула, из которой образуется полимер, носит название мономерного звена (от греческого monos - единичный). Как показывает этот пример, мономерное звено не всегда является повторяющимся элементом цепи.

Однако не всегда звенья цепи идентичны. Многие полимеры образуются при взаимодействии двух различных видов мономерных звеньев или химических соединений. Это приводит к структуре типа

в которой звенья [A] и [B] регулярно чередуются по всей длине цепи.

У полимеров другого типа (называемых сополимерами) соотношение двух различных звеньев [A] и [B] не постоянно, а расположение их в цепи обычно имеет случайный характер, например

Такое построение характерно для многих синтетических каучуков.

Одно из звеньев, скажем В, может соединится с А не только по концам, но и в третьей точке. Это дает возможность цепям разветвляться:

Такой полимер может "расти" из каждой точки разветвления, образуя сложную высоко разветвленную трехмерную структуру.

До сих пор мы не уделяли внимания вопросу о числе элементарных звеньев в молекуле, необходимом для того, чтобы вещество можно было классифицировать как полимер. Что это за число, которое составляет понятие много?

Точного ответа на этот вопрос нет. Вообще говоря, любое число от двух и более соответствует полимеру. Однако полимеры, содержащие несколько звеньев, обычно называются димерами, тримерами, тетрамерами и т.д., по числу входящих в них исходных молекул, или мономерных звеньев, а термин полимер (точнее, высокополимер) относится к случаю, когда число входящих в цепь звеньев достаточно велико. Минимальное число мономерных звеньев высокополимера около 100. Максимальное число звеньев теоретически не ограничено.

Химические свойства полимеров.

Химическая стойкость полимеров определяется разными способами, но чаще всего по изменению массы при выдержке образца в соответствующей среде или реагенте. Этот критерий, однако, не является универсальным и не отражает природу химических изменений (деструкции). Даже в стандартах (ГОСТ 1202066) предусмотрены лишь качественные ее оценки по балльной системе. Так, полимеры, изменяющие за 42 суток массу на 3 ... 5%, считаются устойчивыми, на 5 ... 8% относительно устойчивыми, более 8 ... 10%нестойкими. Конечно, эти пределы зависят от вида изделия и его назначения.
Для полимеров характерна высокая стойкость по отношению к неорганическим реактивам и меньшая к органическим. В принципе все полимеры неустойчивы в средах, обладающих резко выраженными окислительными свойствами, но среди них есть и такие, химическая стойкость которых выше, чем золота и платины. Поэтому полимеры широко используются в качестве контейнеров для особо чистых реактивов и воды, защиты и герметизации радиокомпонентов, и особенно полупроводниковых приборов и ИС.
Особенность полимеров состоит еще и в том, что они по своей природе не являются вакуумплотными. Молекулы газообразных и жидких веществ, особенно воды, могут проникать в микропустоты, образующиеся при движении отдельных сегментов полимера, даже если его структура бездефектна.
Для качественной оценки сорбционно-диффузионных процессов в полимерах используются три параметра: коэффициент диффузии D , м2/с; коэффициент растворимости 5, кг/(м3*Па); коэффициент проницаемости р, кг/(м*Па*с), причем p=DS. Так, для воды в полиэтилене D=0,8-10-12 м2/c, S=10-3 кг(м3 Па) и р=8*10-16 кг/(м*Па*с).
Полимеры выполняют роль защиты металлических поверхностей от коррозии в случаях, когда:

толщина слоя велика

полимер оказывает пассивирующее действие на активные (дефектные) центры металла, тем самым подавляя коррозионное действие влаги, проникающей к поверхности металла.

Как видно, герметизирующие возможности полимеров ограничены, а пассивирующее их действие неуниверсально. Поэтому полимерная герметизация применяется в неответственных изделиях, эксплуатирующихся в благоприятных условиях.
Для большинства полимеров характерно старение необратимое изменение структуры и свойств, приводящее к снижению их прочности. Совокупность химических процессов, приводящих под действием агрессивных сред (кислород, озон, растворы кислот и щелочей) к изменению строения и молекулярной массы, называется химической деструкцией. Наиболее распространенный ее вид термоокислительная деструкция, происходит под действием окислителей при повышенной температуре. При деструкции не все свойства деградируют в равной мере: например, при окислении кремнийорганических полимеров их диэлектрические параметры ухудшаются несущественно, так как Si окисляется до оксида, который является хорошим диэлектриком.

Токсичность и другие негативные свойства полимерных материалов

При оценке экологической чистоты полимерных строительных материалов руководствуются следующими основными требованиями к ним:
полимерные материалы не должны создавать в помещении стойкого специфического запаха;
выделять в воздух летучие вещества в опасных для человека концентрациях;
стимулировать развитие патогенной микрофлоры на своей поверхности;
ухудшать микроклимат помещений;
должны быть доступными влажной дезинфекции;
напряженность поля статического электричества на поверхности полимерных материалов не должна быть больше 150 В/см (при относительной влажности воздуха в помещении 60-70%)
Многочисленные исследования показали, что практически все полимерные строительные и отделочные материалы, созданные на основе низкомолекулярных соединений, в процессе использования могут выделять (мигрировать) токсичные летучие компоненты, которые при длительном воздействии могут неблагоприятно влиять на живые организмы, в том числе и на здоровье человека
Международное агентство по изучению рака (МАИР) обращает внимание на канцерогенную опасность полимеров, полученных из нефти и каменного угля, а Агентство по регистрации токсичных веществ и заболеваний (ATSDR) констатирует, что при производстве пластмасс используются вещества, входящие в перечень двадцати наиболее опасных токсичных веществ.
Приводим характеристику некоторых полимерных строительных и отделочных материалов, способных выделять токсичные субстанции.

Материалы на основе карбамидных смол
Древесностружечные плиты (ДСП) выделяют формальдегида в 2, 5-3 раза и больше допустимого уровня. В свободном состоянии формальдегид представляет собой раздражающий газ, обладающий общей токсичностью. Он подавляет действие ряда жизненно важных ферментов в организме, приводит к заболеваниям дыхательной системы и центральной нервной системы.

Материалы на основе фенолформальдегидных смол (ФФС)
Древесноволокнистые (ДВП), древесностружечные (ДСП) и древеснослоистые (ДСП). Выделяют в воздушную среду помещений фенол и формальдегид. Концентрация формальдегида в жилых помещениях, оборудованных мебелью и строительными конструкциями, содержащими ДСП, может превышать ПДК в 5-10 раз. Особенно высокое превышение допустимого уровня отмечается в сборно-щитовых домах. Токсичность выделяющихся веществ во многом зависит от марки смолы.

Материалы на основе эпоксидных смол.
Как и другие виды смол: карбамидные, фенольные, фурановые и полиуретановые, эпоксидные смолы содержат летучие токсичные вещества: формальдегид, дибутилфтолат, эрихлоргидин и др. Например, полимербетон (ПБ) на основе эпоксидной смолы Эд-6 с введением в его состав пластификатора МГФ-9 снижает выделение ЭХГ и может быть рекомендован только для промышленных и общественных зданий.

Поливинилхлоридные материалы (ПВХ)
ПВХ - линолеумы обладают общей токсичностью, в процессе эксплуатации могут создавать на своей поверхности статическое электрическое поле напряженностью до 2000-3000 В/см. При использовании поливинилхлоридных плиток в воздушной среде помещений обнаруживают фталаты и бромирующие вещества. Весьма, отрицательное свойство плиток - низкие теплозащитные свойства, что приводит к простудным заболеваниям. Рекомендуются только во вспомогательных помещениях и коридорах.

Резиновый линолеум (релин)
Независимо от длительности нахождения в помещении выделяет неприятный специфический запах. Стиролосодержащие резиновые линолеумы выделяют стирол. На своей поверхности релин, как и все пластмассы, накапливает значительные заряды статического электричества. В жилых комнатах покрывать пол релином не рекомендуется.

Нитролинолеум.
Выделяет дибутилфталат и фенол в количествах, превышающих допустимый уровень.

Поливинилацетатные покрытия (ПВА)
При недостаточном проветривании выделяют в воздушную среду помещений формальдегид и метанол в количестве, превышающем ПДК в 2 раза и более.

Лакокрасочные материалы.
Наиболее опасны растворители и пигменты (свинцовые, медные и др.). Кроме того, лакокрасочные покрытия загрязняют воздушную среду жилых помещений толуолом, ксилолом, бутилметакрилатом и др. Токсичные битумные мастики, изготовленныё на основе синтетических веществ, содержат низкомолекулярные и другие летучие токсичные соединения.
Ученые Института строительной экологии в Швеции к числу наиболее опасных химических соединений, выделяющихся в атмосферу жилища из полимерных строительных материалов, относят изоцианты, кадмий и антипирены.
Изоцианты - опасные токсичные соединения, проникающие в жилые помещения из полиуретановых материалов (уплотнителей, соединений и др.). Как отмечают шведские специалисты, полиуретановая пена очень удобна в работе, но может оказаться небезопасной для будущего жилища. Вредное воздействие изоциантов, приводящих к астме, аллергии и к другим заболеваниям, усиливается при нагревании полиуретановых материалов солнечными лучами или теплом от отопительных батарей. Возможный выброс изоциантов в атмосферу требует постоянного контроля, однако, как считают шведские специалисты из Института строительной экологии, существующие методы недостаточны, а новые пока еще в стадии разработки.
Весьма опасен
кадмий - тяжелый металл, содержащийся в лакокрасочных материалах, пластиковых трубах, напольных покрытиях и т. д. Попадая в организм человека, он вызывает необратимые изменения скелета, приводит к заболеваниям почек и малокровию.
Еще одна экологическая угроза, исходящая из полимерных строительных материалов - противопожарные вещества - антипирены, содержащиеся в негорючих пластиках. Установлена связь вредных веществ, выделяющихся из них, и с заболеванием населения аллергией, бронхиальной астмой и др
Проведенные в последние годы детальные исследования показали, что полимерные строительные материалы могут оказаться источником выделения и таких вредных веществ, как бензол, толуол, ксилол, амины, акрилаты и др.
Миграция этих и других токсичных веществ из полимерных материалов происходит вследствие их химической деструкции, т. е. старения как под действием химических и физических факторов (окисления, перепадов температуры, инсоляции и др.), так и в связи с недостаточной экологической чистотой исходного сырья, нарушением технологии их производства или использованием не по назначению. Уровень выделения газообразных токсичных веществ заметно увеличивается при повышении температуры на поверхности полимерных материалов и относительной влажности воздуха в помещении.
Один из возможных источников ухудшения экологического состояния жилых помещений - расселение по поверхности полимерных материалов микрофлоры (грибков, мха, бактерий и др.). Некоторые из пластмасс действуют на микроорганизмы губительно, другие же, наоборот, оказывают на них стимулирующее воздействие, способствуя интенсивному размножению. Насколько опасно это их свойство, можно судить по времени сохранности на поверхности полов из полимерных материалов возбудителей:
дифтерии - 150 дней, брюшного тифа и дизентерии - более 120 дней
В связи с этим в лечебных учреждениях и общественных зданиях используются только такие полимерные материалы, которые обладают бактерицидными свойствами, например, полы на основе поливинилацетатной эмульсии.
Не менее опасна и способность полимерных строительных материалов накапливать на своей поверхности заряды статического электричества. Данная проблема является чрезвычайно актуальной, учитывая вероятность сочетанного воздействия на организм электризуемости полимеров и других негативных факторов.
В частности, установлено, что электризуемость полимеров оказывает стимулирующее воздействие на развитие патогенной микрофлоры, а также способствует более легкому проникновению летучих токсичных веществ, получивших электрический заряд, в организм.
Особенно высокой степенью электризации (более 65 В/кв. см.) отличаются поверхности линолеумов на полихлорвиниловой основе и другие полы на пластмассовой основе.
Антистатический агент, т. е. химическое соединение, нейтрализующее заряды статического электричества, образует на поверхности полимерного материала резиноподобную пленку. Для этих целей используют различные нитро соединения (амины, амиды и др.), полигликоли и их производные, сульфокислоты, фосфорсодержащие кислоты и др. Выбор антистатического агента определяется назначением и видом полимерного материала. В последнее время при подготовке и укладке полимерных облицовочных материалов снятие электростатических зарядов с их поверхности осуществляют и с помощью нейтрализаторов статического электричества - НЭС/А и др.
Выделение газообразных токсичных веществ в результате горения полимерных строительных материалов еще одна весьма серьезная опасность, связанная с их использованием. Газообразные продукты (NH3, HCI, CI2, SO2, HCN), растворимые в воде, поглощаются носовой полостью.

Нерастворимые в воде (СО) продукты проникают в лёгкие, где происходит интенсивный газообмен с кровью.

Гопкалит - смесь 60 % MnO2 и 40 % СuО (наполнитель патронов в противогазе для доокисления СО).

(CO + MnO2 CO2 + MnO)

(2MnO + O2 ( в - х ) 2MnO2)]

Твёрдые продукты горения проникают также в дыхательные пути (бронхи, лёгкие).

Токсичные продукты горения: СО, СО2, NH3, Br2, CI2, COCI2, HCN, H2S, SO2, HCI, HBr, HF, COF2, CH3CI, C2H5Br, CH2=CHCI, HCOH, CH3COH и т.д. Их токсичное действие увеличивается при понижении концентрации О2 в атмосфере.

Кислород- в воздухе 21 %, Ткип. = --185 оС; при 14 % - головокружение, головная боль, утомляемость; при 6 % - смерть в течении 6-8 минут. СО2 (в воздухе 0,05-0,04 %).

Наркотическое действие. При 9 % - через 4 часа падение давления и смерть.

СО - мало растворим в воде. Получается при неполном сгорании органики. СО легко проникает через пористые материалы. Связь гемоглобина с СО прочнее, чем с О2. Вдыхание 5 % СО в составе воздушной смеси в течении 5-10 минут - смертельно.

HCl - резкий запах, хорошо растворим в воде. Вызывает раздражение слизистых оболочек глаз, носа. Образуется при сгорании Cl - содержащих полимеров. Вызывает коррозию металлов, разрушение бетона, цемента.

ПВХ горит. При этом выделяется углекислый газ, водяные пары, твёрдые частицы в виде дыма и частично пары HCI.

HF - резкий запах, хорошо растворим в воде (плавиковая кислота). Образуется при сгорании фторсодержащих полимеров. Сильно раздражает верхние дыхательные пути человека. Вызывает коррозию металлов.

Н2S - запах тухлых яиц. Скапливается на дне ям колодцев и т.д. Горюч. Образуется при горении шерсти, резины и т. д. В небольших количествах вызывает жжение, слезотечение, светобоязнь. В больших концентрациях - судороги и смерть от остановки дыхания. Углеводороды усиливают его действия.

SO2 - характерный острый запах. Раздражает слизистые, травмирует лёгкие. Сухой кашель, жжение и боль в горле, слезотечение, кровотечение.

HCN - бесцветная очень неподвижная жидкость. Ткип. =25,7 оС. Легче воздуха. Хорошо растворим в воде. В присутствии влаги и щелочей гидролизуется до NH3 и НСООН, частично полимеризуется. Горюч. Хорошо проникает, действует на нервную систему. Текстильные волокна и пористые материалы легко сорбируют пары (100г влажной соломы - до 126,3мг HCN).

Синильная кислота может образовываться при горении целлулоида. Следы этой кислоты содержатся в табачном дыме.

NO - при сгорании азотсодержащих полимеров образуются. Действует на кровь. NO2 - бурый газ. Раздражение слизистых. Оттёк лёгких.

NH3 - при сгорании азотсодержащих полимеров образуется аммиак. Обладает резким запахом. Хорошо растворим в воде. Горюч. Раздражающее действие.

COCI2 - запах прелых фруктов или сена. Тяжелее воздуха. Хорошо растворяется в органике, плохо в холодной воде. При нагревании может разлагаться:

COCI2=CO+CI2.

В воде быстро гидролизуется:

COCI2+H2O = HCI+CO2.

Хлор - поражает лёгкие.

Обычно действует смесь продуктов горения на человека. Повышение температуры и влажности, понижение парциального давления О2 усиливают токсичное действие ядов.

Пламя, высокая температура, токсичные продукты горения, дым, снижение содержания кислорода, лучистый тепловой поток, потеря видимости являются опасными факторами пожара, поскольку при определённых уровнях становятся поражающими для его организма или делают невозможным организацию процесса эвакуации. Их нормированные значения приведены в табл. 1.

Таблица 1. Концентрации летучих токсичных веществ, выделяющихся при пожаре и их воздействие

12 % об.

20 % об.

Потеря сознания, смерть в течении нескольких минут.

Немедленная потеря сознания и смерть.

Хлороводород, хлористый водород, HCl

Снижает возможность ориентации человека: соприкасаясь с влажным глазным яблоком, превращается в соляную кислоту.

Вызывает спазмы дыхания, воспалительные отеки и, как следствие, нарушение функции дыхания. Образуется при горении хлорсодержащих полимеров, особенно ПВХ.

2000-3000 мг/м 3

Летальная концентрация при действии в течении нескольких минут.

Циановодород, (цианистый водород, синильная кислота), HCN

Вызывает нарушение тканевого дыхания вследствие подавления деятельности железосодержащих ферментов, ответственных за использование кислорода в окислительных процессах. Вызывает паралич нервных центров. Выделяется при горении азотсодержащих материалов (шерсть, полиакрилонитрил, пенополиуретан, бумажно-слоистые пластики, полиамиды и пр.)

240-360 мг/м 3

420-500 мг/м 3

Смерть в течении 5-10 мин

Быстрая смерть

Фтороводород, (фтористый водород, HF)

Вызывает образование язв на слизистых оболочках глаз и дыхательных путей, носовые кровотечения, спазм гортани и бронхов, поражение ЦНС, печени. Наблюдается сердечно-сосудистая недостаточность. Выделяется при горении фторсодержащих полимерных материалов.

45-135 мг/м 3

Опасен для жизни после несколько минут воздействия

Диоксид азота, NO 2

При попадании в кровь, образуются нитриты и нитраты, которые переводят оксигемоглобин в метгемоглобин, что вызывает кислородную недостаточность организма, обусловленную поражением дыхательных путей. Предполагается, что при пожарах в жилых домах отсутствуют условия, необходимые для интенсивного горения. Однако известен случай массовой гибели людей в клинической больнице из-за горения рентгеновской пленки .

510-760 мг/м 3

950 мг/м 3

При вдыхании в течении 5 мин развивается бронхопневмония

Отек легких

Аммиак, NH 3

Оказывает сильное раздражающее и прижигающее действие на слизистые оболочки. Вызывает обильное слезотечение и боль в глазах, удушье, сильные приступы кашля, головокружение, рвоту, отеки голосовых связок и легких. Образуется при горении шерсти, шелка, полиакрилонитрила, полиамида и полиуретана.

375 мг/м 3

1400 мг/м 3

Допустимая в течении 10 мин

Летальная концентрация

Акролеин (акриловый альдегид, СН 2 =СН-СНО)

Легкое головокружение, приливы крови к голове, тошнота, рвота, замедление пульса, потеря сознания, отек легких. Иногда отмечается сильное головокружение и дезориентация. Источники выделения паров - полиэтилен, полипропилен, древесина, бумага, нефтепродукты.

13 мг/м 3

75-350 мг/м 3

Переносимая не более 1 мин

Летальная концентрация

Сернистый ангидрид (диоксид серы, сернистый газ, SO 2 )

На влажной поверхности слизистых оболочек последовательно превращаются в сернистую и серную кислоту. Вызывает кашель, носовые кровотечения, спазм бронхов, нарушает обменные процессы, способствует образованию метгемоглобина в крови, действует на кроветворные органы. Выделяется при горении шерсти, войлока, резины и др.

250-500 мг/м 3

1500-2000 мг/м 3

Опасная концентрация

Смертельная концентрация при воздействии в течение нескольких минут.

Сероводород. Н 2 S

Раздражение глаз и дыхательных путей. Появление судорог, потеря сознания. Образуется при горении серосодержащих материалов.

700 мг/м 3

1000 мг/м 3

Тяжелое отравление

Смерть в течении нескольких минут

Дым, парогазоаэрозольный комплекс

В его составе находятся твердые частицы сажи, жидкие частицы смолы, влаги, аэрозолей конденсации выполняющих транспортную функцию для токсичных веществ при дыхании. Кроме того, частицы дыма сорбируют на своей поверхности кислород, уменьшая его содержание в газовой фазе. Крупные частицы (> 2,5 мкм) оседают в верхних дыхательных путях, вызывая механическое и химическое раздражение слизистой оболочки. Мелкие частицы проникают в бронхиолы и альвеолы. При поступлении в большом количестве возможна закупорка дыхательных путей.

В настоящее время, нормируется предельные значения опасных факторов пожара, рассмотренные независимо друг от друга. Современные данные показывают, что при одновременном поступлении продуктов горения в организм человека, наблюдается сложный эффект совместного воздействия. Выделяется три типа воздействия: суммирование/аддитивность (конечный результат одновременного действия нескольких ядов равен сумме эффектов каждого из них), потенцирование/синергизм (конечный результат больше арифметической суммы отдельных эффектов) и антагонизм (снижение эффекта совместного действия ядов по сравнению с предполагаемой суммой отдельных эффектов), табл. 2.

Таблица 2. Примеры различных типов влияния опасных факторов пожара, выделяющихся при горении

Изделия на основе поливинилхлорида (ПВХ), например, обрезки линолеума, некоторые виды упаковки 3 , игрушки, предметы из кожзаменителя, ткани, покрытые полимерной пленкой, остатки изолированного электрического кабеля и др. при горении образуют целый ряд токсикантов.

Если горение происходит при температуре ниже 1100 °C, хлорсодержащие полимеры преобразуются в хлорированные полиароматические углеводороды (ПАУ), которые включают такие высокотоксичные и канцерогенные вещества, как диоксины 4 и дибензофураны. Сжигание поливинилхлоридного пластика при 6000 С в условиях дефицита кислорода создает практически идеальные условия для образования этого и других диоксинов. При этих же условиях может образовываться небольшое количество карбонилхлорида (COCl 2 ), более известного как фосген. Это только некоторые из газов, образующихся в результате горения ПВХ - всего же образуется не менее 75 потенциально токсичных веществ.

При очень низких температурах горения, ниже 600 °C, полиуретановые пены не выделяют цианидов, но взамен дают плотный, удушающий дым желтого цвета, который содержит изоцианаты, включая толуол диизоцианат - очень сильный аллерген и раздражитель. Если развести костер из обломков мебели с полиуретановой набивкой, особенно в холодную сырую погоду, то получится большое облако желтого густого дыма, которое широко расползается и очень долго висит в воздухе.

Синтетические материалы, которые являются чистыми углеводородами, такие как полиэтилен, полипропилен и полистирол, не причиняют большого вреда, если горят при высокой температуре - они просто превращаются в углекислый газ и водяной пар. Но температуры костра для этого не достаточно - эти материалы чаще всего медленно тлеют, образуя плотный черный дым, содержащий канцерогенные ароматические углеводороды и раздражающие вещества, например, акролеин.

В последнее время в огонь все чаще попадают ДСП, ДВП и фанера. Они содержат большие количества формальдегидных смол, которые при горении выделяют цианиды и формальдегиды

Альтернативным вариантом простого сжигания считается термическая переработка полимерных материалов в специальных камерах для получения из них вторичных материалов.
В заключение следует подчеркнуть, что в строительстве по соображениям экологической безопасности могут применяться только те полимерные материалы и изделия (облицовочные покрытия, погонажные изделия, клеи, мастика и т. п.), которые отвечают требованиям действующих ГОСТов, ТУ и обладают удовлетворительными санитарно-гигиеническими показатёлями.
Например, для покрытия полов рекомендованы следующие виды поливинилхлоридных покрытий: на теплоизолирующей подоснове (ГОСТ 18108-80), на тканевой подоснове (ГОСТ 7251-77), бесподосновные (ГОСТ 14632-79) и плитки ПВХ для пола (ГОСТ 16475-81), а также вспененный линолеум (ТУ 21- 29-102-84), деколин (ТУ 21-29-103-84), ковроплен (ТУ 400-1-184-79).
Для устройства перегородок и покрытия полов были разрешены плиты ДСП на органо-минеральном связующем (ТУ 110- 028-90), а также ДСП - на фенольно-формальдегидном связующем (ТУ 0 и ТУ 674045-90) выпуска Красноярского комбината. Остальные плиты из-за их токсичности в жилых помещениях применять не разрешалось.
В настоящее время выпуск «Перечня полимерных материалов и изделий, допущенных к применению в строительстве» прекращен. На каждый вид новых полимерных строительных материалов и изделий теперь требуется ГОСТ и отдельный гигиенический сертификат. Не регламентируется и не ограничивается использование полимерных материалов, находящихся в толще конструкций и сообщающихся с воздухом помещений лишь через стыки и трещины, а также клеевых и других малотоксичных материалов, используемых в небольших количествах. Это положение не распространяется на сильно токсичные вещества, например, на такие, как изоцианты, выделяющиеся из полиуретановых уплотнителей, которые даже в весьма малых дозах способны приводить к заболеваниям дыхательных путей и аллергии.
Наряду с гигиенической регламентацией и сертификацией важнейшее значение для повышения уровня экологической безопасности используемых материалов имеет разработка новых видов нетоксичных полимерных строительных материалов и изделий. Немаловажна и экологизация технологического процесса их изготовления, строгий контроль за качеством исходных компонентов сырья.
С экологической точки зрения общая тенденция при использовании полимерных материалов в строительстве должна быть следующей: необходимо как можно шире применять нетоксичные, ограничивать использование малотоксичных и избегать токсичных материалов.

Список литературы

1. Врублевский А.В., Бутылина И.Б. Полимеры и материалы на их основе.

2. Писаренко А.П., Хавин З.Я. Курс органической химии.

3. Нечаев А.П. Органическая химия.

4. Артеменко А.И. Органическая химия.

5. Березин Б.Д. Курс современной органической химии.

6. Ким А.М. Органическая химия.

7. Кнунянц И.Л. Химическая энциклопедия, т.2.

8. Каргин В. А., Слонимский Г. Л., Краткие очерки по физико-химии полимеров.

9. Химические волокна, под ред. М.М. Ламаш.

Для подготовки данной работы были использованы материалы с сайта



Понравилась статья? Поделитесь с друзьями!