Магниторезонансные томографы. Что такое МРТ? Что можно диагностировать с помощью МРТ

Магниторезонансная томография (МРТ) − способ получения томографических медицинских изображений для исследования внутренних органов и тканей с использованием явления ядерного магнитного резонанса. За изобретение метода МРТ Питер Мэнсфилд и Пол Лотербур получили в 2003 году Нобелевскую премию в области медицины.
Вначале этот метод назывался ядерно-магнитно резонансная томография (ЯМР-томография). Но потом, чтобы не пугать зомбированную радиофобией публику, убрали упоминание о "ядерном" происхождении метода, тем более, что ионизирующие излучения в этом методе не используются.

Ядерный магнитный резонанс

Ядерный магнитный резонанс реализуется на ядрах с ненулевыми спинами. Наиболее интересными для медицины являются ядра водорода (1 H), углерода (13 C), натрия (23 Na) и фосфора (31 P), так как все они присутствуют в теле человека. В нем больше всего (63%) атомов водорода, которые содержатся в жире и воде, которых больше всего в человеческом теле. По этим причинам современные МР-томографы чаще всего «настроены» на ядра водорода − протоны.

При отсутствии внешнего поля спины и магнитные моменты протонов ориентированы хаотически (рис. 8а). Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному полю (рис. 8б), причём во втором случае его энергия будет выше.

Частица со спином, помещенная в магнитное поле, напряженностью В, может поглощать фотон, с частотой ν, которая зависит от ее гиромагнитного отношения γ.

Для водорода, γ = 42.58 MГц/Тл.
Частица может подвергаться переходу между двумя энергетическими состояниями, поглощая фотон. Частица на нижнем энергетическом уровне поглощает фотон и оказывается на верхнем энергетическом уровне. Энергия данного фотона должна точно соответствовать разнице между этими двумя состояниями. Энергия протона, Е, связана с его частотой, ν, через постоянную Планка (h = 6.626·10 -34 Дж·с).

В ЯМР величина ν называется резонансной или частотой Лармора. ν = γB и E = hν, поэтому, для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией

Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии. Напряженность постоянного магнитного поля и частота радиочастотного магнитного поля должны строго соответствовать друг другу (резонанс). В ЯМР экспериментах частота фотона соответствует радиочастотному (РЧ) диапазону. В клинической МРТ, для отображения водорода, ν как правило находится между 15 и 80 MГц.
При комнатной температуре количество протонов со спинами на нижнем энергетическом уровне незначительно превосходит их количество на верхнем уровне. Сигнал в ЯМР-спектроскопии пропорционален разности в заселенностях уровней. Число избыточных протонов пропорционально B 0 . Эта разница в поле 0.5 Tл, составляет всего лишь 3 протона на миллион, в поле 1.5 Tл – 9 протонов на миллион. Однако общее количество избыточных протонов в 0.02 мл воды в поле 1.5 Tл – 6.02·10 15 . Чем больше напряженность магнитного поля, тем лучше изображение.

В состоянии равновесия, вектор суммарной намагниченности параллелен направлению примененного магнитного поля B 0 и называется равновесной намагниченностью M 0 . В этом состоянии, Z-составляющая намагниченности M Z равна M 0 . Еще M Z называется продольной намагниченностью. В данном случае, поперечной (M X или M Y) намагниченности нет. Посылая РЧ импульс с ларморовской частотой, можно вращать вектор суммарной намагниченности в плоскости, перпендикулярной оси Z, в данном случае плоскости X-Y.

T1 Релаксация
После прекращения действия РЧ импульса, суммарный вектор намагниченности будет восстанавливаться по Z-оси, излучая радиочастотные волны. Временная константа, описывающая, как M Z возвращается к равновесному значению, называется временем спин-решеточной релаксации (T 1 ).

M Z = M 0 (1 - e -t/T 1 )

T1 релаксация происходит в объеме, содержащем протоны. Однако связи протонов в молекулах неодинаковые. Эти связи различны для каждой ткани. Один атом 1 H может быть связан очень сильно, как в жировой ткани, в то время как другой атом может иметь более слабую связь, например в воде. Сильно связанные протоны выделяют энергию намного быстрее, чем протоны со слабой связью. Каждая ткань выделяет энергию с различной скоростью, и именно поэтому МРТ имеет такое хорошее контрастное разрешение.

T2 Релаксация
T1 релаксация описывает процессы, происходящие в Z направлении, в то время как T2 релаксация описывает процессы в плоскости X-Y.
Сразу после воздействия РЧ импульсом суммарный вектор намагниченности (теперь называемый поперечной намагниченностью) начинает вращаться в плоскости X-Y вокруг оси Z . Все векторы имеют одно и то же направление, потому что они находятся в фазе. Однако они не сохраняют это состояние. Вектор суммарной намагниченности начинает сдвигаться по фазе (расфазировываться) из-за того, что каждый спиновый пакет испытывает магнитное поле, немного отличающееся от магнитного поля, испытываемого другими пакетами, и вращается со своей собственной частотой Лармора. Сначала количество дефазированных векторов будет небольшим, но быстро увеличивающимся до момента, когда фазовая когерентность исчезнет: не будет ни одного вектора, совпадающего по направлению с другим. Суммарная намагниченность в плоскости XY стремится к нулю, и затем продольная намагниченность возрастает до тех пор пока M 0 не будет вдоль Z.


Рис. 9. Спад магнитной индукции

Временная константа, описывающая поведение поперечной намагниченности, M XY , называется спин-спиновым временем релаксации, T 2 . T2 релаксация называется спин-спиновой релаксацией, потому что она описывает взаимодействия между протонами в их непосредственной среде (молекулах). T2 релаксация – затухающий процесс, означающий высокую фазовую когерентность в начале процесса, но быстро уменьшающуюся до полного исчезновения когерентности в конце. Cигнал в начале сильный, но быстро ослабевает за счет T2 релаксации. Сигнал называется спадом магнитной индукции (FID - Free Induction Decay) (рис. 9).

M XY =M XYo e -t/T 2

T 2 всегда меньше чем T 1 .
Скорость смещения по фазе различна для каждой ткани. Дефазирование в жировой ткани происходит быстрее по сравнению с водой. Еще одно замечание относительно T2 релаксации: она протекает гораздо быстрее T1 релаксации. T2 релаксация происходит за десятки миллисекунд, в то время как T1 релаксация может достигать секунд.
Для иллюстрации в таблице 1 приведены значения времен T 1 и T 2 для различных тканей.

Таблица 1

Ткани T 1 (мс), 1.5 T T 2 (мс)
МОЗГ
Серое вещество 921 101
Белое вещество 787 92
Опухоли 1073 121
Отек 1090 113
ГРУДЬ
Фиброзная ткань 868 49
Жировая ткань 259 84
Опухоли 976 80
Карцинома 923 94
ПЕЧЕНЬ
Нормальная ткань 493 43
Опухоли 905 84
Цирроз печени 438 45
МЫШЦА
Нормальная ткань 868 47
Опухоли 1083 87
Карцинома 1046 82
Отек 1488 67

Устройство магнитно-резонансного томографа


Рис. 10. Схема МРТ

Схема магнитнорезонансного томографа показана на рис. 10. В состав МРТ входят магнит, градиентные катушки и радиочастотные катушки.

Постоянный магнит
МРТ сканеры используют мощные магниты. От величины напряженности поля зависит качество и скорость получения изображения. В современных МР-томографах используются либо постоянные, либо сверхпроводящие магниты. Постоянные магниты дёшевы и просты в эксплуатации, но не позволяют создавать магнитные поля с напряженностью большей 0.7 Тл. Большинство магнитно-резонансных томографов это модели со сверхпроводящими магнитами (0.5 – 1.5 Тл). Томографы со сверхсильным полем (выше 3.0 Тл) очень дороги в эксплуатации. На МР-томографах с полем ниже 1 Тл нельзя качественно сделать томографию внутренних органов, так как мощность таких аппаратов слишком низкая, чтобы получать снимки высокого разрешения. На томографах с напряженностью магнитного поля < 1 Тл можно проводить только исследования головы, позвоночника и суставов.


Рис. 11.

Градиентные катушки
Внутри магнита расположены градиентные катушки. Градиентные катушки позволяют создавать дополнительные магнитные поля, накладывающиеся на основное магнитное поле B 0 . Имеются 3 набора катушек. Каждый набор может создавать магнитное поле в определенном направлении: Z, X или Y. Например, когда ток поступает в Z градиент, в Z направлении (вдоль длинной оси тела)создается однородное линейное изменение поля. В центре магнита поле имеет напряженность B 0 , а резонансная частота равняется ν 0 , но на расстоянии ΔZ поле меняется на величину ΔB, а соответственно меняется и резонансная частота (рис. 11). За счет добавления к общему однородному магнитному полю градиентного магнитного возмущения, обеспечивается локализация ЯМР-сигнала. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. От мощности и скорости действия катушек зависит быстродействие, отношение сигнал/шум, разрешающая способность томографа.

РЧ катушки
РЧ катушки создают поле B 1 , которое поворачивает суммарную намагниченность в импульсной последовательности. Они также регистрируют поперечную намагниченность, в то время как она прецессирует в плоскости XY. РЧ катушки бывают трех основных категорий: передающие и принимающие, только принимающие, только передающие. РЧ катушки служат излучателями полей B 1 и приемниками РЧ энергии от исследуемого объекта.

Кодирование сигнала

Когда пациент находится в однородном магнитном поле B 0 , все протоны от головы до пальцев ног выравниваются вдоль B 0 . Все они вращаются с Ларморовой частотой. Если сгенерировать РЧ импульс возбуждения для перевода вектора намагниченности в плоскость X-Y, все протоны реагируют и возникает ответный сигнал, но локализации источника сигнала нет.

Срез-кодирующий градиент
При включенном Z-градиенте, в этом направлении генерируется дополнительное магнитное поле G Z , накладывающееся на B 0 . Более сильное поле означает более высокую Ларморову частоту. Вдоль всего наклона градиента поле B различно и, следовательно, протоны вращаются с разными частотами. Теперь, если сгенерировать РЧ импульс с частотой ν + Δν, прореагируют только протоны в тонком срезе, потому что они - единственные, вращающиеся с этой же самой частотой. Ответный сигнал будет только от протонов из этого среза. Таким образом локализуется источник сигнала по оси Z. Протоны в этом срезе вращаются с одной частотой и имеют одинаковую фазу. В срезе находится огромное количество протонов, и неизвестна локализация источников по осям X и Y. Поэтому для точного определения непосредственного источника сигнала требуется дальнейшее кодирование.


Рис. 12.

Фазо-кодирующий градиент
Для дальнейшего кодирования протонов на очень короткое время включается градиент G Y . В течение этого времени в направлении по оси Y создается дополнительное магнитное поле градиента. В этом случае протоны будут иметь немного различающиеся скорости вращения. Они больше не вращаются в фазе. Разность фаз будет накапливаться. Когда градиент G Y выключен, протоны в срезе будут вращаться с одинаковой частотой, но иметь различную фазу. Это называется кодированием фазы.

Частотно-кодирующий градиент
Для кодирования левого-правого направления включается третий градиент G X . Протоны с левой стороны вращаются с более низкой частотой, чем с правой. Они накапливают дополнительный сдвиг фазы из-за различий в частотах, но уже приобретенная разность фаз, полученная при кодировании фазы градиента на предыдущем шаге, сохраняется.

Таким образом для локализации источника сигналов, которые принимаются катушкой, используются градиенты магнитного поля.

  1. G Z градиент выбирает аксиальный срез.
  2. G Y градиент создает строки с разными фазами.
  3. G X градиент формирует столбцы с разными частотами.

За один шаг кодирование фазы выполняется только для одной строки. Для сканирования целого среза полный процесс кодирования среза, фазы и частоты должен быть повторен несколько раз.
Таким образом созданы маленькие объемы (вокселы). Каждый воксел имеет уникальную комбинацию частоты и фазы (рис. 12). Количество протонов в каждом вокселе определяет амплитуду РЧ волны. Полученный сигнал, поступающий из различных областей тела, содержит сложное сочетание частот, фаз и амплитуд.

Импульсные последовательности

На рис. 13 показана диаграмма простейшей последовательности. Вначале включается срезо-селективный градиент (1) (Gss). Одновременно c ним генерируется 90 0 РЧ импульс выбора среза (2), который "переворачивает" суммарную намагниченность в плоскость X-Y. Затем включается фазо-кодирующий градиент (3) (Gpe) для выполнения первого шага кодирования фазы. После этого подается частотно-кодирующий или считывающий градиент (4) (Gro), в течение которого регистрируется сигнал спада свободной индукции (5) (FID). Последовательность импульсов обычно повторяется 128 или 256 раз для сбора всех необходимых данных для построения изображения. Время между повторениями последовательности называется временем повторения (repetition time, TR). С каждым поторением последовательности меняется величина фазо-кодирующего градиента. Однако в этом случае сигнал (FID) был крайне слабый, поэтому результирующее изображение было плохим. Для повышения величины сигнала применяется последовательность спин-эхо.

Последовательность спин-эхо
После применения 90 0 импульса возбуждения суммарная намагниченность находится в плоскости X-Y. Сразу же начинается смещение фаз вследствие T2 релаксации. Именно из-за этого дефазирования сигнал резко снижается. В идеале, необходимо сохранить фазовую когерентность, обеспечивающую лучший сигнал. Для этого через короткое время после 90 0 РЧ импульса применяется 180 0 импульс. 180 0 импульс вызывает перефазирование спинов. Когда все спины восстановлены по фазе, сигнал снова становится высоким и качество изображения значительно выше.
На рис. 14 показана диаграмма импульсной последовательности спин-эхо.


Рис. 14. Диаграмма импульсной последовательности спин-эхо

Сначала включается срезо-селективный градиент (1) (G SS ). Одновременно c ним применяется 90º РЧ импульс. Затем включается фазо-кодирующий градиент (3) (Gре) для выполнения первого шага кодирования фазы. Gss (4) снова включается во время 180º перефазирующего импульса (5), таким образом, воздействие оказывается на те же протоны, которые были возбуждены 90º импульсом. После этого подается частотно-кодирующий или считывающий градиент (6) (Gro), в течение которого принимается сигнал (7).
TR (Время повторения). Полный процесс должен повторяться неоднократно. TR время между двумя 90ºимпульсами возбуждения. TE (Время эхо). Это время между 90ºимпульсом возбуждения и эхо.

Контраст изображения

При ЯМР сканировании одновременно происходят два процесса релаксации T1 и T2. Причем
T1 >> T2. Контраст изображения сильно зависит от этих процессов и от того, насколько полно каждый из них проявляется при выбранных временных параметрах сканирования TR и TE. Рассмотрим получение контрастного изображения на примере сканирования мозга.

T1 контраст


Рис. 15. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Выберем следующие параметры сканирования: TR = 600 мс и TE = 10 мс. То есть T1 релаксация протекает за 600 мс, а T2 релаксация – только за
5 мс (TE/2). Как видно из рис. 15а через 5 мс смещение фаз невелико и оно не сильно отличается у разных тканей. Контраст изображения, поэтому, очень слабо зависит от T2 релаксации. Что касается Т1 релаксации, то через 600 мс жир практически полностью релаксировал, но для CSF необходимо еще некоторое время
(рис. 15б). Это означает, что вклад от CSF в общий сигнал будет незначительным. Контраст изображения становится зависимым от процесса релаксации Т1. Изображение "взвешено по T1" потому, что контраст больше зависит от процесса релаксации Т1. В результирующем изображении CSF будет темной, жировая ткань будет яркой, а интенсивность серого вещества будет чем-то средним между ними.

T2 контраст


Рис. 16. а) спин-спиновая релаксация и б) спин-решеточная релаксация в различных тканях мозга

Теперь зададим следующие параметры: TR = 3000 мс и TE = 120 мс, то есть T2 релаксации протекать за 60 мс. Как следует из рис. 16б, практически все ткани подверглись полной T1 релаксации. Здесь TE является доминирующим фактором для контраста изображения. Изображение "взвешено по T2". На изображении CSF будет яркой, в то время как другие ткани будут обладать различными оттенками серого.

Контраст протонной плотности

Существует еще один тип контраста изображения, называемый протонной плотностью (PD).
Зададим следующие параметры: TR = 2000 мс и TE 10 мс. Таким образом, как и в первом случае T2 релаксация вносит незначительный вклад в контраст изображения. С TR = 2000 мс, суммарная намагниченность большинства тканей восстановится вдоль Z-оси. Контраст изображения в PD изображениях не зависит ни от T2, ни от T1 релаксации. Полученный сигнал полностью зависит от количества протонов в ткани: небольшое количество протонов означает низкий сигнал и темное изображение, в то время как большое их количество производит сильный сигнал и яркое изображение.


Рис. 17.

Все изображения имеют сочетания T1 и T2 контрастов. Контраст зависит только от того, за сколько времени позволено протекать T2 релаксации. В спин-эхо (SE) последовательностях наиболее важны для контраста изображения времена TR и TE.
На рис. 17 схематически показано, как TR и TE связаны в терминах контраста изображения в SE последовательности. Короткое TR и короткое TE дают контраст, взвешенный по T1. Длинное TR и короткое TE дают контраст PD. Длинное TR и длинное TE приводят к контрасту, взвешенному по T2.


Рис. 18. Изображения с разными контрастами: взвешенный по T1, протонная плотность и взвешенный по T2. Отметьте различия в интенсивности сигнала тканей. CSF темная на T1, серая на PD и яркая на T2.


Рис. 19. Магниторезонансный томограф

МРТ хорошо отображает мягкие ткани, тогда как КТ лучше визуализирует костные структуры. Нервы, мышцы, связки и сухожилия наблюдаются гораздо более четко в МРТ, чем в КТ. Кроме того, магнитно-резонансный метод незаменим при обследовании головного и спинного мозга. В головном мозге МРТ может различать белое и серое вещества. Благодаря высокой точности и четкости полученных изображений магнитно-резонансная томография успешно используется в диагностике воспалительных, инфекционных, онкологических заболеваний, при исследовании суставов, всех отделов позвоночника, молочных желез, сердца, органов брюшной полости, малого таза, сосудов. Современные методики МРТ делают возможным исследовать функцию органов – измерять скорость кровотока, тока спинномозговой жидкости, наблюдать структуру и активацию различных участков коры головного мозга.


Магнитно-резонансная томография (МРТ) является одним из современных методов лучевой диагностики, позволяющим неинвазивно получать изображения внутренних структур тела человека.

Метод был назван магнитно-резонансной томографией, а не ядерно-магнитной резонансной томографией (ЯМРТ) из-за негативных ассоциаций со словом "ядерный" в конце 1970-х годов. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул.

МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения.

Преимущества МРТ

Важнейшим преимуществом МРТ по сравнению с другими методами лучевой диагностики является :
отсутствие ионизирующего излучения и как следствие эффектов канцеро- и мутагенеза, с риском возникновения которых сопряжено (хотя и в очень незначительной степени) воздействие рентгеновского излучения.
МРТ позволяет проводить исследование в любых плоскостях с учетом анатомических особенностей тела пациента, а при необходимости – получать трехмерные изображения для точной оценки взаиморасположения различных структур.
МРТ обладает высокой мягкотканной контрастностью и позволяет выявлять и характеризовать патологические процессы, развивающиеся в различных органах и тканях тела человека.
МРТ является единственным методом неинвазивной диагностики, обладающим высокой чувствительностью и специфичностью при выявлении отека и инфильтрации костной ткани.
развитие МР-спектроскопии и диффузионной МРТ, а также создание новых органотропных контрастных препаратов является основой развития “молекулярной визуализации” и позволяет проводить гистохимические исследовании in vivo.
МРТ лучше визуализирует некоторые структуры головного и спинного мозга, а также другие нервные структуры, в связи с этим она чаще используется для диагностики повреждений, опухолевых образований нервной системы, а также в онкологии, когда необходимо определить наличие и распространенность опухолевого процесса

Физические основы МРТ

В основе МРТ лежит феномен ядерно-магнитного резонанса , открытый в 1946г. физиками Ф.Блохом и Э.Перселлом (Нобелевская премия по физике, 1952г.). Суть этого феномена состоит в способности ядер некоторых элементов, находящихся под воздействием статического магнитного поля, принимать энергию радиочастотного импульса. В 1973г. американский ученый П.Лотербур предложил дополнить феномен ядерно-магнитного резонанса наложением градиентных магнитных полей для пространственной локализации сигнала. С помощью протокола реконструкции изображений, использовавшегося в то время при проведении компьютерной томографии (КТ), ему удалось получить первую МР-томограмму. В последующие годы МРТ претерпела целый ряд качественных преобразований, став в настоящее время наиболее сложной и многообразной методикой лучевой диагностики. Принцип МРТ позволяет получать сигнал от любых ядер в теле человека, но наибольшей клинической значимостью обладает оценка распределения протонов, входящих в состав биоорганических соединений, что определяет высокую мягкотканную контрастность метода, т.е. обследовать внутренние органы.

Теоретически любые атомы, содержащие нечетное число протонов и/или нейтронов, обладают магнитными свойствами. Находясь в магнитном поле, они ориентируются вдоль его линий. В случае приложения внешнего переменного электромагнитного поля, атомы фактически являющиеся диполями, выстраиваются по новым линиям электромагнитного поля. При перестройки вдоль новых силовых линий ядра генерируют электромагнитный сигнал, который можно зарегистрировать приемной катушкой.

В фазу исчезновения магнитного поля, ядра-диполи возвращаются в первоначальное положение, при этом скорость возвращения в первоначальное положение определяется двумя временными константами, Т1 и Т2:
Т1 – это продольное (спин-решетковое) время, отражающее скорость потери энергии возбужденными ядрами
Т2 – это поперечное релаксационное время, зависящее от скорости, с которой возбужденные ядра обмениваются энергией друг с другом

Получаемый от тканей сигнал зависит от числа протонов (протоновой плотности) и значений Т1 и Т2. Применяемые при МРТ пульсовые последовательности предназначены для лучшего использования различий тканей по Т1 и Т2 с целью создания максимального контраста между тканями в норме и патологии.

МРТ позволяет получать большое количество типов изображений, используя пульсовые последовательности с различными временными характеристиками электромагнитных импульсов.

Пульсовые интервалы строят таким образом, чтобы сильнее подчеркивать различия в Т1 и Т2. Наиболее часто используют последовательности «инверсия восстановления» (IR) и «спиновое эхо» (SE) , которые зависят от протонной плотности.

Основным техническим параметром, определяющим диагностические возможности МРТ , является напряженность магнитного поля , измеряемая в Т (тесла). Высокопольные томографы (от 1 до 3 Т) позволяют проводить наиболее широкий спектр исследований всех областей тела человека, включающий функциональные исследования, ангиографию, быструю томографию. Томографы этого уровня являются высокотехнологичными комплексами, требующими постоянного технического контроля и крупных финансовых затрат .

Напротив, низкопольные томографы обычно являются экономичными, компактными и менее требовательными с технической и эксплуатационной точек зрения. Однако возможности визуализации мелких структур на низкопольных томографах ограничены более низким пространственным разрешением, а спектр обследуемых анатомических областей преимущественно ограничен головным и спинным мозгом, крупными суставами.

Обследование одной анатомической области методом МРТ включает выполнение нескольких так называемых импульсных последовательностей. Различные импульсные последовательности позволяют получить специфические характеристики тканей человека, оценить относительное содержание жидкости, жира, белковых структур или парамагнитных элементов (железо, медь, марганец и др.).
Стандартные протоколы МРТ включают в себя Т1-взвешенные изображения (чувствительные к наличию жира или крови) и Т2-взвешенные изображения (чувствительные к отеку и инфильтрации) в двух-трех плоскостях.

Структуры, практически не содержащие протонов (кортикальная кость, кальцификаты, фиброзно-хрящевая ткань), а также артериальный кровоток имеют низкую интенсивность сигнала и на Т1-, и на Т2-взвешенных изображениях.

Время проведения исследования обычно составляет от 20 до 40 мин в зависимости от анатомической области и клинической ситуации.

Точность диагностики и характеризации гиперваскулярных процессов (опухоли, воспаление, сосудистые мальформации) может быть существенно повышена при использовании внутривенного контрастного усиления . Многие патологические процессы (например, мелкие опухоли головного мозга) часто не выявляются без внутривенного контрастирования.

Основой для создания МР-контрастных препаратов стал редкоземельный металл гадолиний (препарат – магневист ). В чистом виде данный металл обладает высокой токсичностью, однако в форме хелата становится практически безопасным (в том числе отсутствует нефротоксичность). Побочные реакции возникают крайне редко (менее 1% случаев) и обычно имеют легкую степень выраженности (тошнота, головная боль, жжение в месте инъекции, парестезии, головокружение, сыпь). При почечной недостаточности частота побочных эффектов не увеличивается.
Введение МР-контрастных препаратов при беременности не рекомендуется, так как неизвестна скорость клиренса из амниотической жидкости.

Разработаны и другие классы контрастных агнетов для МРТ, в том числе – органспецифические и внутрисосудистые .

Ограничения и недостатки МРТ

Большая продолжительность исследования (от 20 до 40 мин)
обязательным условием получения качественных изображений является спокойное и неподвижное состояние пациента, что определяет необходимость седации у беспокойных пациентов или применения анальгетиков у пациентов с выраженным болевым синдромом
необходимость пребывания пациента в неудобном, нефизиологичном положении при некоторых специальных укладках (например, при исследовании плечевого сустава у крупных пациентов)
боязнь замкнутого пространства (клаустрофобия) может быть непреодолимым препятствием для проведения обследования
технические ограничения, связанные с нагрузкой на стол томографа, при обследовании пациентов с избыточной массой тела (обычно более 130 кг).
ограничением к проведению исследования может оказаться окружность талии, несовместимая с диаметром туннеля томографа (за исключением проведения обследования на томографах открытого типа с низкой напряженностью магнитного поля)
невозможность достоверного выявления кальцинатов, оценки минеральной структуры костной ткани (плоские кости, кортикальная пластинка)
не позволяет детально характеризовать паренхиму легких (в этой области она уступает возможностям КТ)
в значительно в большей степени, чем при КТ, возникают артефакты от движения (качество томограмм может быть резко снижено из-за артефактов от движения пациента - дыхания, сердцебиения, пульсации сосудов, непроизвольных движений) и металлических объектов (фиксированных внутри тела или в предметах одежды), а также от неправильной настройки томографа
существенно ограничивается распространение и внедрение данной методики исследования из-за высокой стоимостью самого оборудования (томографа, РЧ-катушек, программного обеспечения, рабочих станций и т.д.) и его технического обслуживания

Основными противопоказаниями к МРТ (магнитно-резонансной томографии) являются:

абсолютные :
наличие искусственных водителей ритма
наличие больших металлических имплантантов, осколков
наличие металлических скобок, зажимов на кровеносных сосудах
искусственные сердечные клапаны
искусственные суставы
вес больного свыше 160 кг

!!! Наличие металлических зубов, золотых нитей, и другого шовного и скрепляющего материала противопоказанием к МРТ – исследованию не является, хотя снижают качество изображения.

относительные :
клаусторофобия – боязнь замкнутого пространства
эпилепсия, шизофрения
беременность (первый триместр)
крайне тяжелое состояние больного
невозможность для пациента сохранять неподвижность во время обследования

Особой подготовки к проведению МРТ-исследования в большинстве случае не требуется , но при исследовании сердца и его сосудов волосы на груди должны быть выбриты. При исследовани органов малого таза (мочевой пузырь, простата) нужно приходить с наполненным мочевым пузырем.Исследования органов брюшной полости проводятся натощак.

!!! В помещение МР-томографа не должны вноситься никакие металлические объекты, так как они могут быть притянуты магнитным полем с большой скоростью, нанести травму пациенту или медицинскому персоналу и надолго вывести из строя томограф.

Отрасль медицинской диагностики имеет в своем арсенале уже достаточно методов, позволяющих определить заболевание, поразившее тот или иной орган. МРТ (магнитно-резонансная томография) – обследование, прочно занявшее лидирующую позицию благодаря своим особенностям. Что такое МРТ и почему методика стала востребована в последние несколько десятилетий практически по всему цивилизованному миру, можно узнать при ознакомлении с принципом работы аппаратуры, применяемой для осуществления процедуры.

Немного истории

1973 год, в котором Пол Лотербур – профессор химии опубликовал свою статью о создании изображения на основе магнитного резонанса в научном журнале Nature, всеми единогласно принят за время основания метода. Немного позднее Питер Мэнсфилд – британский физик, усовершенствовал математические составляющие создания изображения. За вклад в создание магнитно-резонансной томографии оба ученых получили Нобелевскую премию в 2003 году.

Весомый прорыв в развитие метода произошел при изобретении МРТ-сканера американским ученым и врачом Реймондом Дамадьяном, одним из первых исследователей возможностей МРТ. По многочисленным сведениям, ученый является создателем и самого метода, так как еще 1971 году им была опубликована идея об обнаружении рака при помощи МРТ. Также имеется информация о подаче заявки в Комитет изобретений и открытий от советского изобретателя Иванова В.А. по данной теме, подробно описанной уже в 2000 году.

На чем базируется диагностика

Принцип действия МРТ основывается на возможности изучать ткани человеческого организма, исходя из их насыщенности водородом и магнитных свойств. Ядро водорода имеет один протон, содержащий спин (магнитный момент), который под действием магнитного и градиентных (дополнительных) полей, подаваемых на резонансной для него частоте, меняет ориентацию в пространстве.

По параметрам протонов, его магнитных моментов и их векторов, существующих только в двух фазах, а также привязке протона к спинам, можно сделать вывод, в какой тканевой субстанции расположен атом водорода. Воздействие на участок тела электромагнитным полем определенной частоты приводит к смене у части протонов магнитного момента на противоположный, а затем к возврату в исходную позицию.

Программа сбора данных МР томографа регистрирует выброс энергии, возникающей при релаксации возбужденных частиц – протонов. С момента создания метод получил название ЯМРТ (ядерно магнитно-резонансная томография), и назывался так вплоть до аварии на Чернобыльской АС. После было решено убрать из названия первое слово, чтобы не вызывать опасения у проходящих сканирование МРТ.

Особенности работы томографа

Аппарат для МРТ, что это такое, и каковы особенности его устройства? Первые приборы, с помощью которых осуществлялась процедура МРТ, создавали магнитное поле с индукцией 0,005 Тл (Тесла) и качество снимков было низким. Томографы нашего времени оснащены мощными источниками, создающими сильное электромагнитное поле. К ним относятся электромагниты с индукцией до 1–3 Тл, иногда до 9,4 Тл, работающие в жидком гелии, и постоянные магниты до 0,7 Тл, имеющие высокую мощность (неодимовые).

Постоянные вызывают в тканях более слабую магнитно-резонансную реакцию, чем электромагнитные, поэтому область использования первых весьма ограничена. Но при этом постоянные магниты дают возможность провести МРТ обследование при положении стоя, в движении и обеспечивать врачебный доступ к проходящему процедуру при выполнении как диагностических действий, так и лечебных. Такой контроль, позволяет делать МРТ, так называемый метод интервенционной магнитно-резонансной томографии.

Принцип строения томографа

Качество изображений, полученных на МРТ аппарате 3, и, к примеру, 1, 5 Тл, как правило, не отличается. Четкость снимков зависит от настроек оборудования. Но результаты обследования на томографах с индукцией 0,35 Тл будут намного ниже качеством, чем на аппаратах 1,5 Тл. Оборудование, генерирующее поле менее 1 Тл, не позволит получить информативные снимки внутренних органов (брюшной полости и малого таза).

На таких томографах проводится только лишь диагностика головы, позвоночника, суставов, когда описание МРТ не требует изображений высокой точности.

Почему в большинстве случаев выбирается МРТ?

МРТ диагностика и КТ (компьютерная томография) – два метода, основанные на получении послойных изображений органов. Томография в переводе с греческого – сечение. Но при этом методики имеют и различия – КТ выполняет снимки при использовании рентгеновских лучей, что подвергает организм человека лучевой нагрузке, иногда даже довольно большой. Несмотря на небольшую разницу в стоимости процедур, зачастую проводится МРТ, потому что КТ лучше визуализирует только костные ткани.

А в остальных случаях выбирается первая процедура, так как показывает МРТ все мягкие и хрящевые структуры, сосудистые и нервные образования разных размеров. Исследование выявляет множество патологических процессов самого разнообразного характера. К тому же процедуру, такую как МРТ можно назначать беременным и кормящим женщинам, детям, не боясь о возможном вреде их здоровью или внутриутробному развитию плода. Исследование имеет определенные противопоказания, но многие из них не являются абсолютными и при выполнении определенных условий его можно провести.

Когда необходима диагностика при использовании магнитного поля?

Показания к МРТ полностью основываются на ее диагностических особенностях, а именно на количестве молекул водорода в тканях. Так, практически во всех мягких и хрящевых образованиях, благодаря процедуре можно диагностировать следующие разновидности патологических процессов:

К тому же, после того как делают МРТ, становится доступно отследить изменения в сосудистых руслах кровеносной системы, а также лимфатической и ее узлах. Диагностика позвоночника данным методом позволяет воссоздать полное (трехмерное) изображение всех образующих его структур, и провести анализ деятельности опорно-двигательной, нервной и системы кровообращения.


МРТ головного мозга позволяет получить 3D модель органа

Эта особенность диагностики иногда заставляет пациентов, получивших назначение на процедуру задаться вопросом, зачем делают МРТ позвоночника, если костные ткани при обследовании визуализируются недостаточно хорошо? Рекомендация к прохождению обоснована, тем, что патологии позвоночника часто приводят к возникновению заболеваний окружающих тканей, например, тот же остеохондроз, вызывающий ущемление нервов.

В каких случаях нельзя проводить процедуру?

Даже учитывая, что МРТ – исследование безвредное и не инвазивное, все же есть причины, препятствующие его выполнению. Самая главная, которая и является абсолютным противопоказанием к процедуре – это наличие в теле металлических предметов. Причина, напрямую связанная с принципом проведения процедуры.

Поэтому, если у пациента присутствуют кардиостимулятор (водитель сердечного ритма), зубные и ушные несъемные металлические имплантаты, протезы клапанов сердца, ферромагнитные осколки, металлические пластины в костях, аппарат Елизарова, то на вопрос, можно ли делать МРТ, ответ однозначно отрицательный. Исключение только изготовленные имплантаты из титана, так как он не является ферромагнетиком и не отреагирует на воздействие магнитного поля.

Особую опасность предоставляют электромагнитные колебания для людей с кардиостимулятором, так как могут вывести его из строя, поставив жизнь пациента под угрозу. Относительных противопоказаний выделяется гораздо больше, но почти каждое из них можно обойти и провести процедуру при каких-либо способствующих обстоятельствах.

Так, к относительным препятствиям для проведения обследования причисляются:

  • клаустрофобия, психические и физиологические расстройства, проявляющиеся повышенной возбудимостью и невозможностью выдержать процедуру в спокойном состоянии;
  • общее тяжелое состояние пациента – необходимость постоянного контроля его основных жизненных показателей – дыхания, ритмов сердца, пульса, АД;
  • аллергическая реакция на контрастный препарат (в случае необходимости провести );
  • беременность первого триместра (врачи опасаются назначать процедуру на этом сроке, так идет закладка основных органов плода);
  • сердечная, дыхательная и почечная недостаточность в стадии декомпенсации;
  • ожирение 2–3 степени при массе свыше 120–150 кг.

Для каждой из вышеперечисленных ситуаций можно подобрать альтернативный вариант либо определиться необходимо ли МРТ настолько, или его можно заменить каким-либо другим обследованием. Можно избавить человека, страдающего клаустрофобией, от неудобств либо попробовать провести процедуру пациенту с большим весом, для чего делают МРТ на открытом томографе.


Аппарат МРТ с открытым контуром

Нужно ли подготавливаться к процедуре?

Диагностика электромагнитным полем не нуждается в подготовительном процессе. Нет необходимости придерживаться определенного режима питания и соблюдать диету. Только при необходимости исследовать органы малого таза нужно прийти на процедуру с наполненным мочевым пузырем – так как диагностирует МРТ данную область при расправленных стенках органа.

Существует еще один момент, который следует учитывать при назначении МРТ с контрастным усилением. Даже при условии, что для контрастирования применяются не вызывающие аллергические реакции препараты на основе солей гадолиния (Омнискан, Гадовист), все равно предварительно нужно провести тест. Нельзя исключать индивидуальную непереносимость каждого конкретного пациента.

Перед тем как идти на процедуру лучше всего будет продумать одежду и выбрать ту, которая не содержит металлических предметов – замков-молний, пуговиц, страз и других украшений. В некоторых частных клиниках предлагают переодеться в медицинскую сорочку, специально предназначенную для подобного рода мероприятий. Не следует приходить на МРТ в белье с люрексом, так как его нить создана с примесью железа.

Непосредственно перед диагностикой нужно снять все украшения, часы, очки, съемные зубные протезы и ушной аппарат.

Немаловажным моментом, который стоит не игнорировать, является посещение кабинета со всеми предыдущими, если таковые имеются, результатами обследований. Это позволит врачу сразу же сравнить новые снимки и сделать вывод об эффективности лечения или о скорости прогрессирования заболевания, либо его ремиссии. Аппараты МРТ создают настолько мощное магнитное поле, что в кабинете диагностики не присутствует никаких металлических предметов – кушеток, костылей, тростей и других личных вещей пациентов – все предметы остаются за дверью комнаты. После чего только пациенту разрешается проходить на диагностику.

Проведение исследования

Итак, полностью подготовленный пациент располагается на аппаратном столе-кушетке и медицинский персонал фиксирует его для обеспечения полной неподвижности, с учетом того, какую область нужно обследовать. Для закрепления тела больного применяются специально предназначенные ремни и валики. Параллельно ему объясняется, что работа томографа сопровождается довольно громким шумом – постукиванием, гулом, что это абсолютно нормально и не должно вызывать опасений.


Специальное крепление для проведения МРТ головы

Для комфорта при проведении процедуры обследуемому предлагаются наушники либо беруши, что поможет избавиться от неприятных шумовых эффектов. Уведомляют о наличии двухсторонней связи между диагностическим кабинетом и комнатой, в которой находится специалист, управляющий процессом. В любой момент, если пациент почувствует нарастание паники либо смены своего состояния в сторону ухудшения, можно сообщить врачу и он прервет сканирование.

Безусловно, будет хорошо, если пациент перед прохождением МРТ почитает отзывы о нем на любых интернет-порталах, оставленные людьми уже прошедшими диагностику. Тогда он сможет подготовиться морально. Если же он знает, что в подобных ситуациях может испугаться, то стоит заранее позвать с собою на процедуру близкого человека. Для этого нужно предварительно узнать, нет ли у сопровождающего лица противопоказаний к нахождению в электромагнитном поле, чтобы не принести ему вред и не создать помехи для проведения процедуры.

Если все условия выполнены, то кушетка томографа, на которой располагается пациент, задвигается в тоннель аппарата и запускается магнитно-резонансное сканирование. Сама процедура может длиться от 20 минут и до часа – это зависит от особенностей исследуемой области. Если же существуют показания МРТ с контрастированием, например, при подозрениях на онкологические процессы, то время диагностики, как правило, увеличивается вдвое.

После диагностирования

По окончании процедуры в большинстве клиник пациенту предлагается подождать 1–2 часа, пока врач расшифрует результаты исследования. После чего полученные данные выдаются на руки прошедшему обследование в виде снимков, а также на цифровых носителях – компактных дисках, которые доступно можно просмотреть в любое удобное время. Никакого дополнительного отдыха от МРТ не требуется – диагностика не влияет на физическое, психическое и эмоциональное состояние пациента. По завершении всех мероприятий, связанных с посещением клиники, он может заниматься своими привычными делами, в том числе и управлять различной техникой.

Современная медицинская диагностика базируется на двух видах исследований: прикладных (биологических, химических и т.п.) и визуализационных. Если первый вид исследований появился с незапамятных времен, когда человек определял наличие болезни, как говорится, «по запаху и на язык», то визуализация внутренних органов без повреждения организма стала возможной только с открытием свойства радиоактивных материалов производить проникающее излучение, известное сейчас как «рентгеновское».

Открытия физиков в мире элементарных частиц подарили медицине еще один способ получения изображений всех тканей и органов человеческого тела без прямого внедрения. Магнитно-резонансная томография (МРТ) является одним из самых передовых и продолжающих развиваться видов получения информации о состоянии живых организмов.

В диагностике заболеваний позвоночника МРТ является ведущим типом визуализации, т.к. конструкция позвоночного столба включает множество элементов из мягких тканей (межпозвоночные диски, связки, сумки фасеточных суставов), для которых магнитно-резонансная томография является наилучшим способом «неразрушающего контроля».

Что такое МРТ?

В основе визуализационного метода исследований, названного «Магнитно-резонансная томография», лежит одно из открытий квантовой физики и физики элементарных частиц, что ядра определенных элементов способны излучать излишки энергии, поглощенной под воздействием ориентированных магнитных полей и радиочастотных излучений.

Явление «ядерного магнитного резонанса», на котором базируется магнитно-резонансное исследование предметов (живых и неодушевленных), было открыто в 1922 году в ходе эксперимента по определению «спиновой квантизации» в электронах. Именно тогда ученые-физики поняли, что понятие квантовой физики «спин» (момент импульса частицы) имеет физическое выражение.

В ходе исследований по воздействию радиочастотных (РЧ) излучений на частицы, находящиеся в сильном магнитном поле, в 1937 году было выявлено, что ядра образцов поглощают РЧ-энергию определенной частоты и излучают после отключения внешнего импульса. Такое действие могут производить только частицы, ядра которых обладают электрическим зарядом и спином. Такие свойства присущи элементам, в ядре которых присутствует один «лишний» протон (т.е. количество протонов превышает количество электронов). Современная МР томография использует в исследованиях свойства нескольких «органических» элементов, самым популярным из которых является водород Н(1).

Находясь в сильном однородном магнитном поле ядро водорода, состоящее из одного протона, под воздействием радиоимпульса, излученного на определенной частоте (Ларморовская частота резонанса), способно «возбудиться»: энергия поглощенного РЧ-импульса переводит атом водорода на более высокий энергетический уровень. Но это нестабильное состояние неспособно сохраняться без внешнего воздействия, и когда импульсы прекращаются, происходит возврат к стабильному состоянию (релаксация). В процессе этого «остывания» ядро излучает электромагнитную волну, которую можно зафиксировать. Дальнейшее – дело сложных математических пространственных вычислений, в ходе которых сигнал определенного атома превращается в «пиксель» с определенными координатами.

Что заставляет ядро водорода поглощать энергию РЧ-импульса? Именно взаимодействие собственного магнитного поля ядра и наведенного вокруг «объекта исследований», большого, постоянного и ориентированного в определенном направлении магнитного поля, созданного сильными электромагнитами. Каждое ядро атома водорода является единичной магнитной системой, обладающей уникальной направленностью магнитного момента. Магнитные моменты всех протонов принудительно ориентируются в том направлении, в каком направлен вектор магнитной индукции внешнего поля. Энергия РЧ-импульса, излученного на частоте, совпадающей с частотой вращения протонов, поглощается, изменяя положение оси, ориентированной вдоль общего направления магнитного поля (поворачивается на 90 (Т1) и 180 градусов (Т2)). Возврат в нормальное, т.е. «невозбужденное», состояние с разворотом оси вращения в первоначальном направлении сопровождается излучением электромагнитной волны с той же частотой, на которой произошло поглощение энергии. В положениях Т1 и Т2 ядра водорода «запасают» разное количество энергии, и соответственно мощность излучения различается (первое состояние дает меньший импульс, нежели второе).

Это самое простое объяснение сути ядерно-магнитного резонанса в единичной системе, какой является атом водорода, но в плотном веществе для получения результатов требуется более сложное приложение магнитных полей. Для этого введены дополнительные магнитные поля, названные «градиентные». С их помощью можно менять направленность общего магнитного поля в трех измерениях, что позволяет получать изображения в любой проекции (плоскости) и формировать трехмерные изображения с помощью компьютерной обработки (как в компьютерной рентгеновской томографии).

По справедливости томографию следовало бы называть «ядерно-магнитной», т.к. используется именно излучение ядер атомов. Но после аварии, повлекшей разрушение атомного реактора на Чернобыльской АЭС и заражение прилежащих территорий радиоактивными выбросами, любое название, содержащее слово «ядерный», воспринимается со значительной долей нездорового скептицизма. Сокращение было принято для сохранения спокойствия населения, не знакомого с квантовой физикой.

История изобретения, устройство и принцип действия

Современные магнитно-резонансные томографы выпускаются в нескольких технически продвинутых странах, из которых на долю США приходится до 40% общего объема производства. Это не случайно, т.к. большинство основных технологических открытий, касающихся МР томографии, было сделано в американских научных центрах:

  • 1937 год – профессор Колумбийского университета (Нью-Йорк, США) Исидор Раби провел первый эксперимент по исследованию ядерно-магнитного резонанса в молекулярных лучах;
  • 1945 год – в двух университетах (Стэнфорде и Гарварде) проводились фундаментальные исследования ЯМР в твердых объектах (Ф. Блох и Э. Парселл);
  • 1949 год – Э.Ф. Рамсей (Колумбийский университет) сформулировал теорию химического сдвига, легшую в основание МР спектроскопии, обеспечившей химические лаборатории самой точной аналитической аппаратурой;
  • 1971-1977 годы – физик Раймонд Ваган Дамадиан с группой коллег (Бруклинский медицинский центр) создал первый МР-сканер и получил изображение внутренних органов живых объектов (и в том числе человека). В ходе исследований медики выявили, что изображения опухолей сильно отличаются от здоровых тканей. На проектирование и проведение работ потребовалось около 7 лет;
  • 1972 год – химик Пол Лаутербур (Госуниверситет г. Нью-Йорк) получил первое двумерное изображение, используя собственные разработки по применению переменных градиентных магнитных полей.

В 1975 году швейцарский физикохимик Рихард Эрнст предложил методы увеличения чувствительности МРТ (использование преобразований Фурье, фазовое и частотное кодирование), значительно увеличившие качество двумерных изображений.

В 1977 году Р. Дамадиан представил научному миру первое изображение среза грудной клетки человека, сделанное на первом МР-сканере. В дальнейшем техника только совершенствовалась. Особенно большой вклад в развитие МРТ внесло развитие компьютерной техники и программирования, позволившее программно управлять сложным комплексом электромагнитного оборудования и обрабатывать полученное излучение для получения пространственного изображения или двумерных «срезов» в любой плоскости.

На текущий момент существует 4 типа МР-томографов:

  1. На постоянных магнитах (небольшие, переносные, со слабым магнитным полем до 0,35 Тл). Позволяют производить «полевые» исследования во время операций. Наибольшее применение получают постоянные неодимовые магниты.
  2. На резистивных электромагнитах (до 0,6 Тл). Достаточно громоздкие стационарные аппараты с мощной системой охлаждения.
  3. Гибридные системы (на постоянных и резистивных магнитах);
  4. На сверхпроводящих электромагнитах (мощные стационарные системы с криогенной системой охлаждения).

Самое высокое качество изображения, четкое и контрастное, ученые получают на криогенных МР-томографах с сильными магнитными полями до 9,4 Тл (в среднем – 1,5 -3 Тл). Но практика показывает, что для получения качественного изображения требуется не столько мощное поле, но в большей мере быстрая обработка сигналов и хорошая контрастность. С развитием программного обеспечения мощность магнитов стандартных медицинских МР-сканеров снижена до 1-1,5 Тл. Самые мощные томографы изготавливаются для научных медицинских исследований.

Стандартный МР-томограф состоит из нескольких блоков:

  1. Система из нескольких магнитов:
  • большой торовидный магнит, создающий постоянное поле;
  • градиентные магнитные катушки, с помощью которых производится изменение направления вектора магнитной индукции («смещаются полюсы») в трех измерениях. Для смещения градиента изобретены катушки разных форм и размеров (8-образные, седловидные, парные (Гельмготца), Максвелла, Голея). Контролируемая компьютером работа одиночных и парных катушек способна направить моменты ядер в любую сторону или даже развернуть относительно первоначально заданного большим магнитом направления;
  • шиммирующие катушки, необходимые для стабилизации общего поля. Малые магнитные поля этих катушек компенсируют посторонние наводки или возможную неоднородность поля, созданного большим и градиентными магнитами;
  • РЧ-катушка. Радиочастотные катушки создают магнитное поле, пульсирующее с частотой резонанса. Разработаны и применяются три вида катушек: передающие, принимающие и комбинированные (передающе-принимающие). РЧ-излучатель одновременно является и детектором, т.к. при наведении на катушку внешнего излучения, созданного «релаксирующими» протонами, в ее контуре возникают индукционные токи, фиксируемые как РЧ-сигналы. Конструкции детекторов – катушек делятся на два типа: поверхностные и объемные, т.е. окружающие объект. Формы зависят от способов улавливания сигналов, при которых учитываются мощность и направленность излучений. Например, объемная катушка «птичья клетка» служит для получения более качественных изображений головы и конечностей. На томографе установлено несколько парных и одиночных РЧ-катушек для всех видов и направлений РЧ-сигналов.

Самое мощное поле создается сверхпроводящими магнитами. Большой кольцевой магнит, создающий постоянное поле, погружен в герметичный сосуд, наполненный сжиженным гелием (t= -269 о С). Этот сосуд замкнут в другом, большем герметичном сосуде. В пространстве между двумя стенками создан вакуум, что не позволяет гелию нагреться ни на долю градуса (количество вложенных вакуумных сосудов может быть больше двух). Чем меньше сопротивление в проводе катушки, тем выше мощность магнитного поля. Именно этим свойством обосновано применение сверхпроводников, сопротивление в которых близко к 0 Ом.

Система управления томографом состоит из устройств:

  • компьютер;
  • программатор градиентных импульсов (формирует направление магнитного поля с помощью изменения амплитуды и вида градиентных полей);
  • градиентный усилитель (управляет мощностью градиентных импульсов через изменение выходной мощности катушек);
  • источник и программатор РЧ-импульсов формируют амплитуду резонансного излучения;
  • РЧ-усилитель изменяет мощность импульсов до необходимого уровня.

Компьютер управляет блоками формирования полей и импульсов, принимает данные из детекторов и обрабатывает, трансформируя поток аналоговых сигналов в цифровую «картину», которую выводят на монитор и печать.

МР-сканер (т.е. магнитная система) в обязательном порядке окружается системой экранирования от внешних «наводок» электромагнитного и радиоизлучения, которые могут исходить от источников радиосигналов и любых металлических предметов, попавших в сильное магнитное поле. Металлическая сетка или сплошное листовое покрытие стен комнаты создают электрически проводящий экран типа «клетка Фарадея».

МРТ в медицинской диагностике

Магнитно-резонансная томография полностью отличается от рентгеновского просвечивания, т.к. это буквально не «аналоговый» (т.е. фотографический) способ получения изображения, а построение образа с помощью оцифрованных данных. То есть картинка, которую человек видит на экране, является продуктом дешифровки множества микроскопически малых сигналов, которые улавливает детектор томографа (РЧ-катушка). Каждый из этих электромагнитных импульсов обладает определенной мощностью и пространственными координатами внутри тела. Обработка и построение изображения на основании полученных импульсов «релаксации протонов» производится мощным компьютером по специальным программам.

В МРТ используется набор последовательностей РЧ-импульсов, которые создают определенные режимы «возбуждения» протонов водорода в тканях организма с уникальной интенсивностью поглощения и соответствующего возврата энергии. Фактически последовательности являются компьютерными программами, согласно которым производится излучение РЧ-сигналов с определенной амплитудой и мощностью и управление градиентами магнитных полей.

Водород является самым распространенным элементом в теле, т.к. не только присутствует во всех органических молекулах, но и, как компонент воды, содержится в большинстве тканей. Именно поэтому (а также потому, что в ядре только один протон, что позволяет легче вызвать резонанс) томография лучше отображает мягкие ткани, в которых концентрация воды значительно выше. На МРТ-изображении кости, содержащие крайне мало свободных молекул воды, выглядят как непроглядно черные области.

Многочисленные эксперименты показали, насколько различным может быть время релаксации протона, если атом, в котором находится эта элементарная частица, находится в определенном виде ткани. Причем если эта ткань здорова, время «отклика» будет значительно отличаться. Именно по времени релаксации, т.е. скорости возврата РЧ-импульса, компьютером определяется яркость объекта.

В медицинской диагностике с помощью МРТ обследуют не только плотные ткани, но и жидкости: МР-ангиография позволяет определять места образования тромбов, выявлять турбулентности и направление тока крови, измерять просвет сосудов. В исследованиях жидкой среды помогают специальные вещества, изменяющие время отклика протонов в составе жидкости. Контрастные вещества содержат соединения элемента «гадолиний», у которого имеются уникальные магнитные свойства ядер атомов, за которые его называют «парамагнетик».

Также с помощью МРТ измеряется внутренняя температура в любой точке тела. Бесконтактная термометрия основана на измерении резонансных частот тканей (температура измеряется на основании отклонений частоты релаксации в ядах водорода в атомах воды).

В основе построения изображений лежит фиксация трех базовых параметров, которыми обладают протоны:

  • время релаксации Т1 (спин-решеточная, поворот оси вращения протона на 90 о);
  • время релаксации Т2 (спин-спиновая, поворот оси вращения протона на 180 о);
  • протонная плотность (концентрация атомов в ткани).

Другими двумя условиями, влияющими на контрастность и яркость изображения, являются время повторения последовательности и время появления эхо-сигнала.

Используя в последовательностях РЧ-импульсы с определенной мощностью и амплитудой и измеряя время отклика Т1 и Т2, исследователи получают изображения одних и тех же точек тела (тканей) с разной контрастностью и яркостью. Например, короткое время Т1 дает мощный РЧ-сигнал релаксации, что при построении образа выглядит ярким пятном. По комбинации световых характеристик ткани в разных последовательностях выявляются увеличение концентрации воды, жира или конкретное изменение характеристик ткани, говорящее о наличии опухоли или уплотнения.

Для полноты информации о магнитно-резонансной томографии нужно сказать, что управление магнитными полями и радиочастотными импульсами не обходится без «казусов», необычно выглядящих изображений. Их называют «артефактами». Это любая точка, область или черта, присутствующие на изображении, но отсутствующие в организме в виде изменения ткани. Причиной появления таких артефактов могут быть:

  • случайные наводки от неизвестных металлических предметов, попавших в магнитное поле;
  • неисправности аппаратуры;
  • физиологические особенности организма («фантомы», пятна, вызванные движением внутренних органов при дыхании или сердцебиении);
  • неверные действия оператора.

Для устранения «артефактов» проводится внеочередная калибровка и тестирование аппаратуры, пациент и помещение проверяются на наличие инородных предметов, производится повторное обследование в нескольких режимах.

Использование МРТ в диагностике заболеваний позвоночника

Позвоночник – самая подвижная часть опорно-двигательного аппарата. Именно мягкие ткани обеспечивают и подвижность, и целостность позвоночной системы. Если подсчитать все известные и распространенные заболевания позвоночника, на долю повреждений мягких тканей придется до 90% от всех учтенных болезней. А если включить неврологические болезни спинного мозга и спинномозговых нервов и различные виды опухолей, то статистика возрастет до 95-97%. Иначе говоря, болезни, повреждающие костные ткани позвонков, встречаются более чем редко по сравнению с болезнями мягких тканей: межпозвоночных дисков, суставных сумок, связок и мышц спины.

Если сравнивать симптомы различных нарушений целостности мягких тканей, сходство будет исключительным:

  • боли (локальные и распространенные в определенной области);
  • «корешковый синдром» (нарушения целостности спинномозговых нервов и связанные с ними искажения сенсорных сигналов и ответных реакций);
  • различные по силе параличи (плегии), парезы и потери чувствительности.

Именно поэтому результаты магнитно-резонансной томографии имеют высокий статус «решающего слова» в визуализационной диагностике заболеваний позвоночника. Иной раз качественный снимок пораженного участка – это единственный способ окончательно утвердить диагноз, сделанный на основании предварительного осмотра, неврологических тестов и анализов.

Показанием для проведения обследования в МРТ считается наличие воспалительных процессов в области позвоночного столба, сопровождающихся активной иммунной реакцией (повышение температуры тела, отекание тканей, покраснение кожного покрова). Анализы подтверждают наличие иммунной реакции, но не способны указать точное положение места инфицирования и воспаления. МР томограмма с точностью до 1 мм устанавливает координаты очага, ареал распространения воспалительного процесса. МР ангиограммы укажут границы тромбирования сосудов и отека тканей. В исследовании хронических заболеваний (остеохондроз во всех стадиях, спондилоартроз и т.п.) МРТ показывает исключительную полезность.

Также прямым показанием для применения МРТ являются симптомы, указывающие на возможное образование абсцессов в эпидуральной области: сильные локализованные боли, «корешковый синдром», прогрессирующая потеря чувствительности и парализация конечностей и внутренних органов.

Инфекционные заболевания, способные повредить все типы тканей (туберкулез, остеомиелит), требуют комплексного исследования с помощью МРТ и компьютерной томографии (КТ). На МР томограммах выявляются поражения нервных тканей, хрящевых межпозвоночных дисков, суставных сумок. КТ дополняет общую картину данными о разрушениях костных тканей тел позвонков и отростков.

Повреждения спинного мозга и близких к ним тканей (кровеносных сосудов, оболочек мозга, внутренней надкостницы спинномозгового канала) требуют многосторонних и кропотливых исследований на МРТ, т.к. большая часть нарушений нервных тканей связана с образованием опухолей (доброкачественных и раковых), изредка – абсцессов (эпидуральных и субдуральных). Исследования магнитно-резонансной томографии первоначально были нацелены на выявление именно опухолевых образований в ЦНС. Многолетние наблюдения и систематизация накопленного опыта позволяют исследователям определять появляющиеся новообразования на первой стадии, «в зачаточном состоянии».

Развитие сканерной техники направлено на повышение детализации, контрастности и яркости изображения объектов любого размера, а также на максимально быстрое получение данных после излучения РЧ-импульса. Современный МР-томограф способен «показывать» происходящие процессы в реальном времени: сердцебиение, движение жидкостей, дыхание, сокращение мышц, образование тромба. Малые открытые МР-сканеры на постоянных магнитах позволяют производить операции с минимальным уровнем повреждений поверхностных тканей (интервенционная МРТ).

Компьютерное программирование позволяет построить по данным, полученным со сканера, объемное изображение на экране монитора или с помощью лазерной техники.

Развивается направление МРТ исследований позвоночника в вертикальном положении. Подвижная установка оборудована столом, меняющим положение на 90 о, что позволяет снять в реальном времени изменения в позвоночном столбе при увеличении вертикальных нагрузок. Особенно ценны такие данные при изучении травм (переломов разных типов) и спондилолистеза.

По отзывам проходивших обследование, они не испытывают никаких болезненных ощущений. Самое большое впечатление на них производит шум, который создает аппаратура: «сильный стук в стенках тоннеля, как будто поблизости работает перфоратор». Это вращается подвижная деталь постоянного магнита.


Противопоказания

Однозначным препятствием проведению МРТ обследования является наличие в теле пациента имплантатов и устройств, содержащих металлы, в любой степени обладающие свойствами ферромагнетиков. Для информации: только чистый титан, применяющийся для создания вертебральных систем фиксации, не обладает магнитными свойствами.

Наличие в теле пациента кардиостимулятора, кохлеарного имплантата с электронным оборудованием и металлическими деталями сразу вызовет в магнитном поле возмущения, которые на томограмме создадут «артефакт». Кроме того, электронный аппарат выйдет из строя, причинив владельцу максимальный ущерб. К такому же результату приведет наличие в теле искусственных суставов, штифтов, скоб или даже осколков металла, оставшихся после ранения. Некоторые химические соединения, входящие в состав красок для татуажа, также обладают ферромагнитными свойствами (в частности, микроскопические частицы способны нагреваться в сильном магнитном поле, что приводит к ожогам глубоких слоев эпидермиса).

Во время обследования от пациента требуется максимальная неподвижность во время достаточно продолжительного времени. Препятствием к проведению МРТ может быть психическая нестабильность, определенные фобии (клаустрофобия, например), которые вызовут у обследуемого шоковое состояние, истерику, непроизвольную подвижность.

Для повышения качества изображения могут применяться контрастные вещества (соединения гадолиния), свойства которых еще не до конца изучены. Например, как они могут подействовать на развитие плода во время первых трех месяцев беременности. Поэтому не рекомендуется проводить обследования беременных женщин, требующие применения контрастных веществ. Кроме того, у людей, имеющих индивидуальную физиологическую непереносимость, эти препараты могут вызвать непредвиденную анафилактическую реакцию.

Совершенствование техники, использующей явление ядерно-магнитного резонанса, дает медикам, химикам и биологам мощный инструмент для исследования текущих процессов в живом организме и поиска патологий на самых ранних стадиях развития.

Статьи по теме

Магнитно-резонансная томография (МРТ) – современная неинвазивная методика, позволяющая визуализировать внутренние структуры организма. Основана на эффекте ядерного магнитного резонанса – реакции атомных ядер на воздействие электромагнитными волнами в магнитном поле. Дает возможность получить трехмерное изображение любых тканей человеческого тела. Широко применяется в различных сферах медицины: гастроэнтерологии, пульмонологии, кардиологии, неврологии, отоларингологии, маммологии, гинекологии и т. д. Благодаря высокой информативности, безопасности и приемлемой цене МРТ в Москве занимает ведущие позиции в списке методик, используемых для диагностики заболеваний и патологических состояний различных органов и систем.

История исследования

Датой создания МРТ традиционно считают 1973 год, когда американский физик и радиолог П. Лотербур опубликовал статью, посвященную этой тематике. Однако история МРТ началась намного раньше. В 40-х годах ХХ американцы Ф. Блох и Р. Пурселл независимо друг от друга описали явление ядерно-магнитного резонанса. В начале 50-х оба ученых получили Нобелевскую премию за свои открытия в области физики. В 1960 году советский военный подал заявку на патент, в котором описывался аналог МРТ-аппарата, однако заявка была отклонена «за нереализуемостью».

После публикации статьи Лотербура МРТ начала бурно развиваться. Чуть позже П. Мэнсфилд провел работу по усовершенствованию алгоритмов получения изображения. В 1977 году американский ученый Р. Дамадьян создал первый прибор для МРТ-исследований и провел его испытания. В американских клиниках первые аппараты МРТ появились в 80-х годах прошлого века. К началу 90-х годов в мире насчитывалось уже около 6 тысяч таких приборов.

В настоящее время МРТ является медицинской методикой, без которой невозможно представить современную диагностику болезней органов брюшной полости, суставов, головного мозга, сосудов, позвоночника, спинного мозга, почек, забрюшинного пространства, женских половых органов и других анатомических структур. МРТ позволяет выявлять даже незначительные изменения, характерные для ранних стадий заболеваний, оценивать структуру органов, измерять скорость кровотока, определять активность различных отделов головного мозга, осуществлять точную локализацию патологических очагов и т. п.

Принципы визуализации

В основе МРТ лежит явление ядерного магнитного резонанса. Ядра химических элементов представляют собой своеобразные магниты, которые быстро вращаются вокруг своей оси. При попадании во внешнее магнитное поле оси вращения ядер определенным образом сдвигаются, ядра начинают вращаться в соответствии с направлением силовых линий этого поля. Это явление называется процессией. При облучении радиоволнами определенной частоты (совпадающей с частотой процессии) ядра поглощают энергию радиоволн.

При прекращении облучения ядра переходят в свое нормальное состояние, поглощенная энергия высвобождается, создавая электромагнитные колебания, регистрируемые при помощи специального прибора. Аппарат МРТ регистрирует энергию, высвобождаемую ядрами атомов водорода. Это позволяет выявлять любые изменения концентрации воды в тканях организма и, таким образом, получать изображения практически любых органов. Определенные ограничения при проведении МРТ возникают при попытке визуализировать ткани с незначительным содержанием воды (кости, бронхоальвеолярные структуры) – в подобных случаях изображения получаются недостаточно информативными.

Виды МРТ

С учетом исследуемой области можно выделить следующие разновидности МРТ:

  • МРТ головы (головного мозга, гипофиза и околоносовых пазух).
  • МРТ органов грудной клетки (легких и сердца).
  • МРТ брюшной полости и забрюшинного пространства (поджелудочной железы, печени, желчевыводящих путей, почек, надпочечников и других органов, расположенных в данной области).
  • МРТ органов малого таза (мочевыводящих путей, предстательной железы и женских половых органов).
  • МРТ опорно-двигательного аппарата (позвоночника, костей и суставов).
  • МРТ мягких тканей , в том числе – молочных желез, мягких тканей шеи (слюнных желез, щитовидной железы, гортани, лимфоузлов и других структур), мышц и жировой клетчатки различных областей человеческого тела.
  • МРТ сосудов (сосудов головного мозга, сосудов конечностей, мезентериальных сосудов и лимфатической системы).
  • МРТ всего тела . Обычно используется на этапе диагностического поиска при подозрении на метастатическое поражение различных органов и систем.

МРТ может проводиться как без использования, так и с использованием контрастного вещества. Кроме того, существуют специальные методики, позволяющие оценивать температуру тканей, движение внутриклеточной жидкости, функциональную активность участков головного мозга, отвечающих за речь, движения, зрение, память.

Показания

МРТ в Москве обычно применяют на заключительном этапе диагностики, после проведения рентгенографии и других диагностических исследований первой линии. МРТ используют для уточнения диагноза, дифференциальной диагностики, точной оценки тяжести и распространенности патологических изменений, подготовки плана консервативной терапии, определения необходимости и объема хирургического вмешательства, а также динамического наблюдения в процессе лечения и в отдаленном периоде.

МРТ головы назначают для изучения костей, поверхностных мягких тканей и внутричерепных структур. Методику применяют для выявления патологических изменений головного мозга, гипофиза, внутричерепных сосудов и нервов, ЛОР-органов, околоносовых пазух и мягких тканей головы. МРТ используется в процессе диагностики врожденных аномалий, воспалительных процессов, первичных и вторичных онкологических поражений, травматических повреждений, заболеваний внутреннего уха, патологии глаз и пр. Процедура может проводиться с контрастированием и без контрастирования.

МРТ органов грудной клетки применяют в ходе исследования структуры сердца, легких, трахеи, крупных сосудов и бронхов, плевральной полости, пищевода, вилочковой железы и лимфоузлов средостения. Показанием к МРТ являются поражения миокарда и перикарда, сосудистые расстройства, воспалительные процессы, кисты и опухоли органов грудной клетки и средостения. МРТ может проводиться с использованием или без использования контрастного препарата. Малоинформативна при исследовании альвеолярной ткани.

МРТ брюшной полости и забрюшинного пространства назначают для изучения структуры поджелудочной железы, печени, желчевыводящих путей, кишечника, селезенки, почек, надпочечников, мезентериальных сосудов, лимфоузлов и других структур. Показанием к проведению МРТ являются аномалии развития, воспалительные заболевания, травматические повреждения, желчнокаменная болезнь , мочекаменная болезнь , первичные опухоли, метастатические новообразования, другие заболевания и патологические состояния.

МРТ малого таза применяют при исследовании прямой кишки, мочеточников, мочевого пузыря, лимфоузлов, внутритазовой клетчатки, предстательной железы у мужчин, яичников, матки и маточных труб у женщин. Показанием к проведению исследования являются пороки развития, травматические повреждения, воспалительные заболевания, объемные процессы, камни в мочевом пузыре и мочеточниках. МРТ не предусматривает лучевой нагрузки на организм, поэтому может использоваться для диагностики болезней репродуктивной системы даже в период гестации.

МРТ опорно-двигательного аппарата назначают при изучении костных и хрящевых структур, мышц, связок, суставных капсул и синовиальных оболочек различных анатомических зон, в том числе – суставов, костей, определенного отдела позвоночного столба или всего позвоночника. МРТ позволяет диагностировать широкий спектр аномалий развития, травматических повреждений, дегенеративно-дистрофических заболеваний, а также доброкачественных и злокачественных поражений костей и суставов.

МРТ сосудов применяют при изучении сосудов головного мозга, периферических сосудов, сосудов, участвующих в кровоснабжении внутренних органов, а также лимфатической системы. МРТ показана при пороках развития, травматических повреждениях, острых и хронических нарушениях мозгового кровообращения, аневризмах, лимфедеме , тромбозе и атеросклеротическом поражении сосудов конечностей и внутренних органов.

Противопоказания

В качестве абсолютных противопоказаний к проведению МРТ в Москве рассматривают кардиостимуляторы и другие имплантированные электронные устройства, крупные металлические импланты и аппараты Илизарова. В список относительных противопоказаний к МРТ включают протезы сердечных клапанов, неметаллические импланты среднего уха, кохлеарные импланты, инсулиновые насосы и татуировки с использованием ферромагнитных красителей. Кроме того, относительными противопоказаниями к проведению МРТ являются первый триместр беременности, клаустрофобия , декомпенсированные болезни сердца, общее тяжелое состояние, двигательное возбуждение и неспособность больного выполнять указания врача, обусловленные нарушениями сознания или психическими расстройствами .

МРТ с контрастированием противопоказано при аллергии на контрастное вещество, хронической почечной недостаточности и анемии. МРТ с использованием контрастного вещества не назначают в период гестации. В период лактации пациентку просят заранее сцедить молоко и воздерживаться от кормления в течение 2 дней после проведения исследования (до окончания вывода контраста из организма). Наличие титановых имплантов не является противопоказанием для любых видов МРТ, поскольку титан не обладает ферромагнитными свойствами. Методику также можно использовать при наличии внутриматочной спирали.

Подготовка к МРТ

Большинство исследований не требуют специальной подготовки. В течение нескольких дней до проведения МРТ малого таза следует воздержаться от употребления газообразующих продуктов. Для уменьшения количества газа в кишечнике можно использовать активированный уголь и другие аналогичные препараты. Некоторым пациентам показана клизма или прием слабительных средств (по указанию врача). Незадолго до начала исследования необходимо опорожнить мочевой пузырь.

При проведении любых видов МРТ нужно предоставить врачу результаты других исследований (рентгенографии, УЗИ, КТ, лабораторных анализов). Перед началом МРТ следует снять с себя одежду с металлическими элементами и все металлические предметы: заколки, драгоценности, часы, зубные протезы и пр. При наличии металлических имплантов и вживленных электронных устройств необходимо сообщить специалисту об их виде и расположении.

Методика проведения

Пациента укладывают на специальный стол, задвигающийся в тоннель томографа. При МРТ с контрастированием в вену предварительно вводят контрастное вещество. На протяжении всего исследования больной может контактировать с врачом при помощи микрофона, установленного внутри томографа. При проведении процедуры аппарат МРТ создает незначительный шум. По окончании исследования пациента просят подождать, пока врач изучит полученные данные, поскольку в некоторых случаях для создания более полной картины могут потребоваться дополнительные снимки. Затем специалист готовит заключение и передает его лечащему врачу или выдает на руки больному.

Стоимость магнитно-резонансной томографии в Москве

Цена диагностической процедуры зависит от исследуемой области, необходимости контрастирования и применения специальных дополнительных методик, технических характеристик оборудования и некоторых других факторов. Наиболее существенное влияние на цену магнитно-резонансной томографии в Москве оказывает необходимость введения контраста – при использовании контрастного препарата суммарные расходы пациента могут увеличиваться почти вдвое. Стоимость сканирования также может колебаться в зависимости от организационно-правового статуса клиники (частная или государственная), уровня и репутации медицинского учреждения, квалификации специалиста.



Понравилась статья? Поделитесь с друзьями!