Дом, питаемый ветрами – расчёт ветрогенератора.

Уже прочитали: 5 499

Важный нюанс при покупке ветряка

Прежде чем приобрести или , необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке , так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

Расчет мощности ветрогенератора

также нуждается в предварительном расчете . Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Произвести точный расчет с учетом всех факторов, воздействующих на ветряк, достаточно сложно. Для неподготовленных в теоретическом отношении мастеров такой расчет слишком сложен, он требует обладания множеством данных, недоступных без специальных измерений или расчетов.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач. От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

Для примера рассмотрим расчет простого варианта . Формула выглядит следующим образом:

P=k·R·V³·S/2

Где P - мощность потока.

K - коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

ЧИТАЙТЕ ТАКЖЕ: Основные недостатки и преимущества энергии ветра: история использования и ресурсы планеты

R - плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м 3 .

V - скорость ветра.

S - площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

Что нужно учитывать?

При расчете ветряка следует учитывать особенности конструкции ротора . Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Сооружение мачты может обойтись в большую сумму денег и значительные вложения труда. Кроме того, обслуживание ветряка, расположенного на высоте около 10 м над поверхностью земли чрезвычайно сложно и опасно.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения - ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Реальная мощность самодельного ветрогенератора

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора - мощность, номинальная скорость вращения ротора и т.д.

Самодельный вертикальный ветрогенератор

Для расчета есть простая формула:

P — мощность Ватт

S — площадь ометания лопастей кв.м.

V^3 — Скорость ветра в кубе м/с

0.6 — это скорость ветра. Ветер движущийся в пространстве принимается за единицу, но ветер при подходе к любому препятствию теряет свою скорость и мощность. Так-как потери в скорости нам не известны, то будем брать 0.6, это с учетом того что ветер потеряет скорость на 33%.

Дополнительно формула расчета площади круга S=πr2 , где

r — радиус окружности в квадрате

Вообще вертикальные ветряки подобно рекламным щитам ветер тормозят очень сильно, и перед препятствием образуется воздушная подушка, натыкаясь на которую новые порции ветра расходятся по сторонам и 30-40% энергии ветра уходит не принимая участия в давлении на лопасти. По-этому общий КПД, или по правильному КИЭВ ветроколеса у вертикальных ветряков достаточно низкий и составляет всего 10-20% от энергии ветра.

Из анализа самодельных вертикальных ветряков КИЭВ в основном 10% всего, но мы-же оптимисты, по-этому я буду брать КИЭВ 0.2, хотя здесь еще не учитывается КПД генератора и трансмиссии.

0.6*6*2*2*2*0.2=5,76 ватт при 2м/с

0.6*6*3*3*3*0.2=19,44 ватт при 3м/с

0.6*6*4*4*4*0.2=46,08 ватт при 4м/с

0.6*6*5*5*5*0.2=90 ватт при 5м/с

0.6*6*7*7*7*0.2=246 ватт при 7м/с

0.6*6*10*10*10*0.2=720 ватт при 10м/с

Теперь понятно на что способен данный ротор. Далее нам нужно подогнать генератор к этому ротору чтобы генератор смог вырабатывать максимально возможную мощность, которая имеется на роторе, и при этом не перегружать ротор — чтобы он мог вращаться и его обороты сильно не падали. Иначе толку не будет, выработка энергии сильно упадет. Чтобы подогнать генератор нам нужно узнать обороты ветроколеса на каждой скорости ветра.

В отличие от горизонтальных ветряков, где скорость вращения кончиков лопастей обычно в 5 раз быстрее скорости ветра, вертикальный ветрогенератор не может вращаться быстрее скорости ветра. Это связано с тем что тут ветер просто толкает лопасть, и она начинает двигаться с потоком проходящего ветра. А горизонтальный винт работает за счет подъемной силы, которая образуется у тыльной части лопасти, и она выдавливает лопасть вперед, и тут обороты ограничиваются только аэродинамическими свойствами лопасти и подъемной силой.

Вдаваться в подробности не будем, и вернемся к нашему ветроколесу. Чтобы высчитать обороты ротора размером 2*3 метра, где ширина ротора 2 метра, нужно узнать длину окружности ротора. 2*3,14=6.28 метра, то-есть за один оборот кончик лопасти проходит путь в 6.28 метра. Это значит что в идеале полный оборот ротор сделает за проходящий поток ветра длинной 6.28 метра. Но так-как энергия тратится на вращение, на трансмиссию, да еще и на вращение генератора — который нагружен аккумулятором, то обороты упадут в среднем в два раза. И того полный оборот ротор сделает за 12 метров потока ветра.

Тогда получается так, если ветер 3м/с, то при этом ветре за секунду ротор сделает 0,4 оборота, а за 4 секунды полный оборот. А за минуту при ветре 3м/с будет 60_4=15об/м.

При 3м/с 12_3=4, 60_4=15об/м

При 4м/с будет 12_4=3, 60_3=20об/м.

При ветре 5м/с 12_5=2.4, 60:2.4=25об/м.

При 7м/с 12_7=1.71, 60:1,71=35об/м

При 10м/с 12_10=1.2, 60:1.2=50об/м

С оборотами ветроколеса я думаю теперь понятно, и они известны. Чем больше в диаметре ветроколесо, тем меньше его обороты относительно скорости ветра. Так к примеру ветроколесо диаметром 1 метр будет крутится в два раза быстрее чем ветроколесо 2м в диаметре.

Теперь нужен генератор, который на этих оборотах должен вырабатывать мощность не более чем может выдать ветроколесо. А если генератор будет мощнее, то он перегрузит ротор, и тот не сможет раскрутится до своих оборотов, и в итоге обороты будут низкие и общая мощность. При ветре 3м/с у нас 15 об/м, и мощность ветроколеса 19 ватт , вот нужно чтобы генератор нагружал ротор не более 19ватт. Это с учетом КПД редуктора (если он имеется) и КПД самого генератора. КПД редуктора и генератора обычно не известны, но на них тоже значительные потери, и в общем на этом теряется 20-50% энергии, и на выходе на аккумулятор уже поступает всего 50%, это в нашем случае 10ватт примерно.

Если генератор перегрузит ветроколесо, то его обороты не выйдут на номинальные, и будут значительно ниже скорости ветра. От этого упадут обороты генератора и его мощность. Плюс еще значительно медленные по скорости лопасти относительно ветра, будут его сильно тормозить и ветер будет разбегаться в стороны, в итоге мощность ветроколеса упадет еще больше. Так со слишком мощным генератором энергии на аккумулятор будет в разы меньше чем могло бы быть. Или наоборот, когда генератор слишком слабый и при 15об/м ветроколеса не может на полную нагрузить ветроколесо, то то-же получается что мы берем гораздо меньше энергии от возможной.

В итоге генератор должен соответствовать по мощности ветроколесу, только так мы можем снять максимально возможную мощность ветроколеса. Это можно сказать самая сложная задача так-как генератор может абсолютно разных характеристик напряжения и тока к оборотам. Чтобы подобрать генератор его нужно покрутить на аккумулятор и измерить отдаваемую энергию, или просчитать по формулам. А далее уже пробовать подгонять к ветроколесу.

К примеру у вашего генератора при 300об/м 1Ампет на АКБ 14вольт, это примерно 14ватт, а ветроколесо выдает 19ватт при 15об/м. Значит мультипликатор нужен 1:20 чтобы генератор крутился при этом на 300об/м. При 5м/с обороты ветроколеса 25об/м, а генератор значит будет вращаться со скоростью 500об/м. Мощность ветроколеса у нас при этом всего 90ватт, а генератор превышает по мощности и дает 200ватт. Так не пойдет ветроколесо просто будет медленно вращаться и свои 90ватт не выдаст — а 200ватт тем-более. Выход — или жертвовать началом зарядки и делать редуктор 1:15, или увеличивать по высоте ветроколесо в два раза чтобы ветроколесо потянуло генератор.

Расчет вертикальных ветрогенераторов
Расчет вертикального ветрогенератора в общих чертах. От чего отталкиваться при расчете, статья ориентирована на начинающих


Секция: Технические науки

XL Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки»

Расчет мощности ветрогенератора

Расчет мощности ветрогенератора. Распределение продолжительности градаций скорости ветра, оценка превалирующего направления ветра, построение розы ветров для данной местности. Выбор ВРТБ – ветроэлектростанции с вертикально расположенным валом генератора (VAWT)

Распределение скорости ветра по градациям позволяет рассчитать выработку ветроэлектростанции по каждому месяцу. Для этого следует процент повторяемости интервала скорости ветра преобразовать в соответствующий временной интервал. Тогда мощность ветрогенератора, соответствующая данной ветровой градации, и время работы ВЭС в данном режиме позволяют определить количество электроэнергии за рассматриваемый месяц при соответствующей скорости ветра. Повторяемость скорости ветра по градациям представляет собой временную характеристику скорости ветра. Эта характеристика важна для ветроэнергетических расчетов, связанных с оценкой интервалов времени работы ветроэлектростанции при различных скоростях ветра. Интервал наблюдений ветрогенерации выбрали один месяц. Среднее значение распределения месячного ветрового потенциала определяется обработкой данных ежедневных наблюдений на ближайшей метеостанции. В качестве примера распределения ветрового потенциала в течение года по градациям в таблице 1 приведены данные метеостанции города Костаная.

Таблица 1.

Повторяемость различных градаций скорости ветра (%)

Суммарная энергия, которую может произвести ветроэлектростанция конкретного типа за рассматриваемый временной интервал, определяется как сумма энергий, соответствующих каждой градации ветра:

где: Pi –мощность ВЭС при средней скорости ветра i – градации, Ti – продолжительность i – градации скорости ветра в течении месяца, n –количество градаций скорости ветра.

Расчет распределения продолжительности градаций скорости ветра за два месяца наблюдения на метеостанции приведен на рисунке 1.

Рисунок 1. График распределения продолжительности градаций скорости ветра

При расчете выработки электроэнергии следует учитывать увеличение скорости ветра на высоте оси ветродвигателя по сравнению с данными наблюдений на высоте флюгера. Обычно башня для ветроэлектростанции входит в состав её комплектации с указанием конструктивных параметров. Для автономных ВЭС на мощности до 100–200 кВт высота башни обычно не превышает 50 м. Соответственно, учет вертикального профиля ветра на высотах 20, 30, 40, 50 м позволит более точно оценить ветроэнергетический потенциал местности.

Для оценки превалирующего направления ветров строится роза ветров (рис. 2), представляющая собой векторную диаграмму, у которой длина лучей, расходящихся от центра диаграммы в разных направлениях (румбах горизонта), пропорциональна повторяемости ветров этих направлений.

Рисунок 2. Роза ветров

Превалирующее направление ветра на выбранной площадке следует учитывать при строительстве ветропарка, а также соотносить его с ландшафтом (за исключением равнинного характера местности).

Таким образом, результатами исследования ветроэнергетического потенциала в предполагаемом месте размещения ветроэлектростанции являются следующие характеристики:

1) Определение среднедневной, среднемесячной и среднегодовой скорости ветра по данным метеонаблюдений за 5-10 лет.

2) Пересчет средней скорости ветра каждого месяца на предполагаемую высоту башни ветрогенератора.

3) Распределение скорости ветра на высоте оси ветрогенгератора по градациям для каждого месяца года.

4) Построение розы ветров для города Костаная.

Полученные ветроэнергетические характеристики позволяют оптимизировать выбор ветроэнергетического оборудования и, далее, интегрировать его в систему электроснабжения города.

Гибридная автономная система – солнце-ветер (инверторно-аккумуляторная).

Возможно подключение солнечных фотомодулей к ветрогенераторной системе через контроллеры для солнечных систем + ДГУ.

В данных условиях следует принять возможность обеспечить объект установкой дополнительного оборудования:

1. Инверторно-аккумуляторной системой + АВР (для накапливания энергии при отсутствии нагрузки, и для питания от аккумуляторов при отсутствии ветра), при полном разряде АКБ, АВР переключит питание от аккумуляторов на ДГУ.

2. Установленная мощность ВЭС и требования к размещению ветро-парка.

ВРТБ – ветроэлектростанция с вертикально расположенным валом генератора(VAWT). Основным преимуществом конструкции ветростанции является ее независимое «наведение на ветер». Ветросиловая часть принимает ветер с любой стороны автоматически без каких-либо настроечных операций и не требует разворота станции при изменении направления ветра.

Комплексная энергетическая система ВРТБ включает следующие функциональные элементы:

· модули ВРТБ для преобразования энергии ветра,

· солнечную фотоэлектрическую установку для генерация электрической энергии,

· аккумуляторные батареи для хранения выработанной энергии и обеспечения потребителя электроэнергией,

· ШУЗ ВРТБ – устройство обеспечения корректного функционирования станции, контроля заряда, автоматики,

· генератор (преобразование механического вращения модулей в электроэнергию),

· инвертор – прибор преобразования постоянного тока, вырабатываемого КЭС, в переменный, требуемый потребителю, с возможностью выдачи электроэнергии в сеть.

· при одинаковых размерах с винтовыми роторные имеют большую площадь «ометаемой» поверхности и, следовательно, большую мощность (в 2–3 раза),

· не боятся резких кратковременных порывов ветра (шквалов),

· ротор не стоит на месте (в одной плоскости, как воздушный винт), а постоянно уходит от ветра, поэтому установки не боятся штормовых ветров и легко, без дополнительных мер безопасности, в том числе конструктивных, используются в более широком диапазоне ветров (от 2 до 50 м/сек). С повышением скорости ветра только увеличивается устойчивость (эффект волчка или гироскопа),

· эффективная работа при малых скоростях ветра (3–4 м/сек),

· возможность монтажа установки на различных площадях (крыши зданий, платформы, вышки, мобильные сооружения (бытовки, вагончики и пр.),

· полная бесшумность при всех режимах работы (30 B на расстоянии 5 м при ветре 15 м/с),

· отсутствие необходимости флюгерной системы, ориентирующей винт на ветер, что позволяет установке работать при неустойчивых по направлению ветрах, при резкой смене направления ветра,

· сравнительно малая скорость вращения ротора (до 200 об/мин) увеличивает ресурс работы подшипников, интервал между смазкой движущихся поверхностей, общий ресурс работы,

· возможность использования приземного низового ветра,

· уникальный генератор с контрвращением,

· простота монтажа и технического обслуживания,

Расчет мощности ветрогенератора
Марченко Е.А. Расчет мощности ветрогенератора // XL Студенческая международная заочная научно-практическая конференция «Молодежный научный форум: технические и математические науки»


РАСЧЕТ ВЕТРОГЕНЕРАТОРА,

Практическое занятие № 4

Цель: ознакомиться с основными параметрами ВЭУ и методикой расчета ветрогенераторов.

Продолжительность занятия – 2 часа

Ход работы:

1. На основании теоретической части работы ознакомится и законспектировать классификацию и особенности строения ветрогенераторов и их технические характеристики.

2. В соответствии с индивидуальным заданием произвести расчет ветрогенератора.

1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Ветрогенераторами называют двигатели, преобразующие энергию ветра в механическую работу. По устройству ветряка и положению его в потоке ветра системы ветродвигателей разделяются на три класса:

1. Крыльчатые ветрогенераторы имеют ветроколесо с тем или иным числом крыльев. Плоскость вращения ветроколеса у крыльчатых ветродвигателей перпендикулярна направлению ветра, следовательно, ось вращения параллельна ветру (рис. 1, а). Коэффициент использования энергии ветра этих ветродвигателей достигает ξ= 0,42.

2. Карусельные и роторные ветрогенераторы имеют ветроколесо (ротор) с лопастями, движущимися в направлении ветра, ось вращения ветроколеса занимает вертикальное положение (рис. 1, б). Коэффициент использования энергии ветра этих ветродвигателей равен от 10 до 18%.

3. Барабанные ветрогенераторы имеют такую же схему ветроколеса, как и роторные, и отличаются от них лишь горизонтальным положением ротора, т. е. ось вращения ветроколеса горизонтальна и расположена перпендикулярно потоку ветра (рис. 1, г). Коэффициент использования энергии ветра этих ветряков от 6 до 8%.

Рис. 1. Системы ветродвигателей: а - крыльчатые ветродвигатели, б) - роторные ветрогенераторы, в - карусельные ветрогенераторы, г - барабанные ветрогенераторы.

Рис. 2 – Ветродвигатель и его основные элементы

Крыльчатый ветродвигатель состоит из следующих элементов (рис. 2):

1. Ветряк может иметь от 2 до 24 лопастей. Ветряки с числом лопастей от 2 до 4 называются малолопастными, если у ветроколеса более 4 лопастей, то оно называется многолопастным.

2. Головка ветродвигателя представляет опору, на которой монтируется вал ветроколеса и верхняя передача (редуктор).

3. Хвост крепится к головке и поворачивает ее около вертикальной оси, устанавливая ветроколесо на ветер.

4. Башня ветродвигателя служит для выноса ветроколеса выше препятствий, нарушающих течение воздушного потока. Маломощные ветродвигатели, работающие на генератор, обычно монтируются на столбе или трубе с растяжками.

5. У основания башни вертикальный вал приключается к нижней передаче (редуктору), которая передает движение рабочим машинам.

6. Регулирование оборотов ветроколеса представляет приспособление или механизм, с ограничивающий обороты ветроколеса с увеличением скорости ветра.

Параметры ветроустановки связаны между собой несложными однозначными физическими зависимостями.

Основные параметры ВЭУ:

Номинальная мощность P ном [Вт, кВт] — мощность, развиваемая ветроустановкой при расчетной скорости ветра,

Расчетная скорость ветра V P [м/с] — скорость, которую принимают для расчета ветровой нагрузки на сооружения при проектировании. В зависимости от класса сооружения в расчет принимается скорость с заданной повторяемостью - 1 раз в год, в 5, 10, 15, 20, 50 и 100 лет,

Диаметр ветротурбины D [м] – отрезок, соединяющий пару наиболее удаленных друг от друга точек ветротурбины, проходящий через ее центр.

Выработка энергии W М [кВт Ч] – количество энергии, вырабатываемое ветротурбиной за определенный промежуток времени (месяц, год), величина, зависящая от средней скорости ветра,

Средняя мощность P СР [кВт] — мощность, при непрерывном поддержании которой, выработка энергии за месяц будет равна реальной.

РАСЧЕТ ВЕТРОГЕНЕРАТОРА
РАСЧЕТ ВЕТРОГЕНЕРАТОРА, Практическое занятие № 4 Цель: ознакомиться с основными параметрами ВЭУ и методикой расчета ветрогенераторов. Продолжительность занятия – 2 часа Ход



Сейчас довольно широкую популярность приобретают ветряные генераторы. На рынке присутствует великое множество самых разнообразных моделей. Возникает вопрос: как рассчитать мощность ветрогенератора?

Расчет мощности ветрогенератора

В большинстве случаев, процесс целесообразности монтирования ветряных станций будет зависеть от средних скоростей ветра в определенной местности. Монтирование ветряных установок является оправданной при минимальной силе ветра четыре метра в секунду. При скорости ветра девять-двенадцать метров в секунду, ветряная установка будет работать на максимальных оборотах.

Кроме того, мощность таких устройств также зависит от поверхностей используемых лопастей и от диаметрального размера роторного устройства. При известных средних скоростях ветра по данному региону, можно подобрать необходимый генератор, используя определенную величину размера винта.

Расчет производится по формуле: Р=2D*3V/7000 кВт, в которой P является мощностью, D является диаметральным размером винтового устройства, а такой параметр, как V, обозначает силу ветра в метрах в секунду. Но такая формула подходит только для ветрогенераторов горизонтального назначения.

Ветрогенераторы большой мощности: обзор, плюсы и минусы, нюансы

На сегодняшний день могут производиться ветряные устройства, у которых мощность ветрогенератора является достаточно большой. Ветряные установки больших мощностей используются, в основном, для промышленных нужд.

У данных генераторов имеются несомненные преимущества:

  • способность обеспечить необходимым количеством энергии даже средние по своей величине поселки,
  • использование энергетических ресурсов природного характера, которые просто неограниченны по своим запасам.

Недостатками данных генераторов, да и вообще всех генераторных устройств с применением силы ветра, являются:

  • неподконтрольность природных сил,
  • слишком быстрое изнашивание аккумуляторных устройств,
  • создание довольно большого шума при работе,
  • создание разнообразного рода помех для различной аппаратуры.

На данный момент существует великое множество производителей ветровых устройств по производству энергии. Приведем основные:

  1. Российский дочерний филиал предприятия «Algatec Solar» (Германия),
  2. Отечественная фирма по производству ветряков и других типов оборудования «ЭнерджиВинд»,
  3. Московская компания с хорошим по своим качественным характеристикам оборудованием - «Сапсан-Энергия».

Конечно же, существуют и другие компании данного направления, но их перечисление займет слишком много времени.

Ветрогенераторы малой мощности

Для обеспечения дополнительных нужд электропитания в частном хозяйстве и на малых предприятиях, могут применяться ветрогенераторы малых мощностей.

Ветрогенераторы малой мощности

Генератор с малой мощностью не сможет в полной мере обеспечить частный дом необходимой энергией, но вот в качестве дополнительного источника питания (в случаях с постоянными отключениями электричества) помочь могут. На малых предприятиях, также в качестве дополнительных источников, могут монтироваться несколько генераторов с маленькой мощностью.

На данный момент существуют даже модели переносных ветрогенераторов небольшой производительности. Мощностей таких переносных устройств вполне хватает для процесса освещения: можно использовать один-два электроприбора. Такие переносные модели имеют небольшой вес и просты в монтаже.

Промышленные ветрогенераторы большой мощности

Для промышленных масштабов потребления электричества применяются ветряные станции с большой мощностью. В большинстве случаев, такие генераторы просто огромны.

Промышленные ветрогенераторы - когда требуются большие результаты

Кроме того, обычно применяется расположение данных установок в обширных долинах, могут устанавливаться в достаточно пустынных местностях, есть даже варианты морских плантаций с ветряками.

Особенно большое распространение такие огромные долины с ветряками получили в европейских странах и на американском континенте.

В США существует огромное количество мест с расположенными ветряными станциями промышленных масштабов.

Ветрогенераторы разных типов мощности и их особенности
Сейчас довольно широкую популярность приобретают ветряные генераторы. Возникает вопрос: как рассчитать мощность ветрогенератора без ошибок?


По мере того как растут потребительские цены на электроэнергию, а также на газ, бензин и дизельное топливо, владельцы собственных домов всё чаще рассматривают варианты электроснабжения от независимых альтернативных энергоисточников различного происхождения и конструкции. Одним из самых доступных источников является энергия ветра.

Сколько энергии таится в ветре?

Для начала, приблизительно оценим ту мощь, которую хотим использовать в своих целях. Рассчитаем энергию, выделяемую потоком воздуха с плотностью? и скоростью V, оказывающим давление на площадь S по простой формуле:

P = V3 ? S

Если принять плотность воздуха?=1,25 кг/м3, скорость ветра V=5 м/с, а площадь сечения турбины радиусом 2 метра S=12,5 м2, в результате получится 1953 Вт, т. е. чуть меньше 2 кВт. Однако из этой внушительной мощности даже самые совершенные сегодня ветряные электростанции (ВЭС) способны преобразовывать в электрическую энергию лишь сравнительно небольшую долю.

Наибольшие потери связаны с завихрениями воздушного потока в турбине и огибанием лопастей ветряка. Они учитываются коэффициентом преобразования ветровой энергии?, не превышающим в современных установках 0,4 – 0,5. Учитывая коэффициенты полезного действия редуктора и генератора, принимаем их равными соответственно 0,9 и 0,85. И вычисленное по уточнённой формуле значение выходной мощности той же энергоустановки:

P = ? ? R2 V3 ? КПД ред КПД ген = 0,45 12,5 125 1,25 0,9 0,85 = 672 Вт,

что составляет примерно треть от всей задействованной энергии ветра. В настоящее время суммарный КПД существующих ветрогенераторов не превышает 40%.
Этот примерный расчет ветрогенератора показывает, что получается не так уж много энергии на выходе, особенно в сравнении с современными портативными дизельными электростанциями.

А что на практике?

Хорошим примером выгодного использования энергии ветра будет рассмотрение параметров реально производящейся компанией Wind Electric и успешно применяющейся на практике модели ВЭС WE3000. Обладая ротором диаметром 4,5 м, при номинальной скорости ветра 10 м/с она вырабатывает 3 кВт, а максимальная мощность ветрогенератора – 5,1 кВт. Для запуска генератора необходим ветер со скоростью не менее 2 м/с.

Подобная установка вполне может обеспечить электричеством небольшой коттедж, хотя далеко не всегда и не везде можно рассчитывать на достаточно ветренную погоду.

Сколько стоит ветряная электроэнергия?

Цену вырабатываемого установкой ВЭС электричества в каждом конкретном случае довольно просто рассчитать по следующей формуле:

Ц = (Ст + РЭ Т) / (Р Т),

Ст – стоимость покупки и установки электростанции;
РЭ – ежегодные расходы по эксплуатации;
Р – энергия, вырабатываемая за год (кВт час/год);
Т – срок эксплуатации ВЭС в годах (как правило – 20 лет).

Какая всё-таки нужна мощность?

Прежде чем покупать ветряную электростанцию, следует полностью определиться с величиной пиковой суммарной мощности, потребляемой всей бытовой техникой, приборами и электроустановками в доме, всем, что может быть включено в сеть одновременно. И тут очень важно, будет ли ВЭС использоваться как дополнительный или резервный источник энергии, либо вы желаете перевести ваше хозяйство на полностью автономное электроснабжение.

В первом случае надо всего лишь знать тот минимум потребления энергии, который необходим в случае отключения внешнего электроснабжения, и покупать установку соответствующей мощности.
Для полной энергетической автономности приходится приобретать ветрогенераторы повышенной мощности, которые могут обеспечить общее потребление всей домашней техники. Конечно, это недёшево, но зато вам больше не понадобится покупать электроэнергию на стороне.

Где расположить ветрогенераторную станцию?

Конечно, лучше всего предоставить выбор места расположения ВЭС специалистам. Но существуют 3 основных правила, которых стоит придерживаться:

  • Исключить завихрения воздушного потока вблизи турбины. Высота расположения ветряной турбины на мачте должна превосходить на 10 м все высотные объекты в пределах 100 м вокруг. Это касается, например, и столбов, и проводов ЛЭП.
  • Использовать природные преимущества рельефа местности. Дело в том, что ущелья и каньоны являются естественными аэродинамическими трубами и в местах их сужения скорость ветра существенно возрастает.
  • Располагать ВЭС на максимально открытых участках, таких как поле, побережье водоёма или вершина холма.

Размер и количество лопастей ветряков

Расчет лопастей ветрогенератора в общем случае сводится к простой зависимости, которую надо усвоить, - чем больше лопастей в турбине, тем меньше её диаметр, необходимый для выработки заданной мощности.

Комбинирование источников энергии

В местности, где ветер часто меняет направление и силу в зависимости от сезонных колебаний или ещё по каким-то причинам, наиболее надёжным вариантом автономного электроснабжения будет сочетание двух различных источников энергии. Чтобы исключить перебои с электричеством, рационально параллельно ВЭС использовать солнечные батареи или тривиальный дизель-генератор.



Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.

Ниже формула расчета мощности энергии ветра P=0.6*S*V^3 , где

P- мощность Ватт

S- площадь ометания кв.м.

V^3- Скорость ветра в кубе м/с

r- радиус окружности в квадрате

К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт. Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.

Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.

Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.

У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%. Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт. И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.

Из реальной жизни практический расчет мощности ветрогенератора.

Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.

На фото два реальных самодельных ветрогенератора, первый горизотальный трехлопастной с диаметром винта 1,5м., второй вертикальный шириной 1м высотой 1,8м. Не считая данные сразу напишу что мощность горизонтального на ветру 10м/с около 90 ватт, и вертикального 60ватт. КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2.

Теперь вычислим площадь винта ометаемую ветром, для первого это 1,76м, для второго вертикального 1,8м.

значит для горизонтального 0,6*1,76*10*10*10=1056*0,3*0,8-20%=202ватт.

значит для вертикального 0,6*1,8*10*10*10=1080*0,2*0,8-20%=138ватт.

Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей. В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.

Реальная мощность самодельного ветрогенератора.

Горизонтальный ветрогенератор мощностью 202ватт.-50%=101ватт, а реальных 90ватт.

Вертикальный ветрогенератор мощностью 138ватт.-50%=69ватт,а реальных 60ватт.

Уже продолжительное время интересуясь ветрогенераторами я сделал (может и ошибочный) вывод что большинство самодельных ветроустановок далеки от заводских аналогов. Только лишь с применением точных расчетов можно добиться высокого КПД всей ветроустановки и это удается не многим.

А с большинства самодельных ветрогенераторов можно при расчете мощности смело скидывать половину ожидаемой мощности и сразу делать ветрогенератор в два раза мощнее чем нужен, чтобы компенсировать все недочеты домашней сборки и применяемых материалов.

Расчет мощности ветроколеса
Как расчитать диаметр и мощность ветрогенератора, в принципе все достаточно просто.Формула для расчета ветроколеса, а так-же реальные примеры расчетов мощности.


Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты.

В связи с ростом цен на энергоносители, все больше владельцев частных домов обращаются к возобновляемых и нетрадиционных источников энергии (ВНИЭ), таких как ветровая, солнечная, гидроэнергия и геотермальная. Здесь расскажем, как рядовому гражданину нашей страны рационально и доступно, с финансовой точки зрения, можно воспользоваться энергией ветра.

Перед тем как будет продемонстрирован пример выбора ветроэлектростанции (ВЭС), следует узнать, каким образом поток воздуха трансформируется в электрическую энергию и сколько такой энергии можно будет получить на своем участке. По приведенной формуле можно рассчитать энергию, которая «гуляет» вашим участком:

Например, на площадь, равной 3 кв.м дует воздушный поток обычной плотности со скоростью 5 м/с. При таких условиях получим:

Где,
V — скорость ветра, единица измерения — м/с
S — площадь, на которую дует (пожимает) воздушный поток, единица измерения — м2

Почти 2 кВт, в идеале, если не учитывать ту часть потока, которая пойдет на завихрения, обтекание объекта и т.д. В реальных условиях максимально мы можем получить 30-40% от потенциальной энергии воздушного потока. Это ограничение связано с технологическим и физическим выполнением ветрогенератора. Более точный расчет можно сделать по следующей формуле:

Где,
ξ — коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина
R — радиус ротора, единица измерения — м
V — скорость воздушного потока, единица измерения — м / с
ρ — плотность воздуха, единица измерения — кг/м3
ηред — КПД редуктора, единица измерения — проценты
ηген — КПД генератора, единица измерения — проценты

Для следующих данных:
ξ = 0,45
R = 2 м
V = 5 м / с
ρ = 1,25 кг/м3
ηред = 0,9
ηген = 0,85

Не так много выходит. почему тогда использование ВЭС выгодно? Лучшим подтверждением в данном случае послужит «живой» пример. Для этого, как пример, приведем характеристики установки одной из украинских компаний, которая вежливо согласилась предоставить расчетные данные из собственных продуктов. Смотрите также: Калькулятор для расчета ветрогенератора

Рассматриваемые модель имеет номинальную мощность 5кВт и следующие важные для нас технические параметры:

По данным инженерного центра компании WindElectric модель WE3000 имеет следующую характеристику (мощность в зависимости от скорости ветра): При скорости ветра 10 метров в секунду такая установка будет генерировать более 3кВт ч, такого количества энергии полностью хватит для маленького коттеджа, но стоит помнить, что в нашей стране далеко не всегда ветренно.

Пришло время выяснить важнейший вопрос, сколько же это будет стоить и через какое время окупится? Стоимость электроэнергии приближенно можно определить по следующей схеме:

Где,
В — полная стоимость ВЭС, единица измерения — грн, рубли, $ и т.д.
ЕВ — эксплуатационные расходы за год, единица измерения — (грн / год, рубли / год, $ / год)
Р — количество произведенной энергии за год, единица измерения — кВт время
Т — срок службы ветрогенератора в годах (считается Т = 20 лет)

Выработка энергии за год,

Совершая покупку, мы не всегда точно знаем, что с ней делать и насколько она нам необходима. В случае с ветроэлектростанцией это следует непременно выяснить.

Вариант первый: Я хочу частично обеспечить свою квартиру независимым источником энергии (мой дом подключен к внешней сети. В таком случае мощность установки будет зависеть от количества энергии, которую вы хотите получать не из сети, а генерировать самостоятельно.

Вариант второй: Я хочу обеспечить свою квартиру независимым источником энергии, поэтому выбираю вариант ВЭС (мой дом не подключен к внешней сети. В этом случае нужно точно знать свои потребности в электроэнергии.

В чем отличие этих двух вариантов? В обоих случаях требуется ВЭС, но необходимо знать, в какой мере она будет использоваться, следовательно, какой мощности установка будет нам нужна.

Подготовка к выбору ВЭС. правильнее будет написать подготовка к разговору с компанией-специалистом, кто же еще сможет предоставить услуги по установке, настройке и гарантийного обслуживания? Прежде чем сделать вам предложения, компания должна иметь некоторые сведения. Попробуем узнать о них. Это заинтересует и вас. Для двух приведенных выше вариантов подготовка имеет несколько общих пунктов:

1. Потребности. Если вы решили купить сок, то сначала оцениваете силу жажды, которую чувствуете. После этого покупаете бутылку сока соответствующего объема. Для установки ВЭС нужно знать свои «аппетиты». Под «аппетитами» в нашем случае следует иметь в виду количество потребляемой электроэнергии за сутки, месяц, время года. Необходимо также установить границу верхней нагрузки (к примеру, в праздничные дни в вашем доме работают одновременно два телевизора, музыкальный центр, компьютер, освещение в нескольких комнатах, микроволновая печь и т.д.), т.е. верхний предел нагрузки — это максимальное энергопотребление вашего жилища. Необходимо также знать продолжительность этой максимальной нагрузки. Установить общее энергопотребление очень просто, однако это потребует от вас изрядной тщательности. Ваша задача — выяснить мощность каждого электроприбора в помещении и время его работы, а после внести сведения в таблицу.

2. Размещение. Следующим подготовительным этапом будет ориентировочный (!) выбор места расположения ВЭС. Ориентировочный, поскольку только специалисты смогут определить наилучший вариант для Вашего индивидуального случая. Однако есть несколько пунктов, которые позволяют лучше представить возможное расположение ВЭС. Следует помнить 3 золотых правила:
* Турбулентность. Ветротурбина должна размещаться на 10 метров выше наивысшиего объекта в радиусе 100 метров (включая ЛЭП).
* По возможностью, ВЭС должны размещаться на открытых участках (берегах рек, морей, озер).
* Орография местности. Следует учитывать, что в природных ущельях, каньонах поток воздуха имеет свойство сжиматься и, как следствие, увеличивается его скорость. Подобную ситуацию можно наблюдать на пригорках.

3. В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:
* ВЭС + Солнечные батареи
* ВЭС + Дизель

Альтернативная энергия Альтернативная энергетика, возобновляемые источники энергии, энергетические ресурсы планеты
В статье приводится упрощенный расчет ветрогенератора (расчет мощности ветрогенератора). Расчет ветрогенератора представлен на практических примерах.


Бытовой ремонт №1

Выберите надежных мастеров без посредников и сэкономьте до 40%!

  1. Заполните заявку
  2. Получите предложения с ценами от мастеров
  3. Выберите исполнителей по цене и отзывам

Разместите задание и узнайте цены

Ветрогенераторы как источник электроэнергии не так давно завоевали популярность у жителей загородных участков. Перед установкой необходимо сделать расчет ветрогенератора для своей местности. Этот экологически чистый прибор для выработки электричества бывает двух видов:

  • с горизонтальной осью
  • с вертикальной осью

Последние более эффективны и технологичны. Единственным минусом вертикальных ветрогенераторов является их высокая цена. Часто такие приборы окупаются в течение пятнадцати лет. Поэтому ветрогенераторы используют как дополнительный источник энергии. Установить их можно своими руками.

Как выбрать ветрогенератор

Если грамотно подойти к вопросу покупки вертикального ветрогенератора, можно увеличить его производительность и сократить срок окупаемости. Сначала следует рассмотреть разные виды вертикальных ветрогенераторов:

  • ортогональные генераторы, которые не нуждаются в направляющих механизмах. Они имеют несколько лопастей параллельно основной оси. Работа такого генератора не зависит от направления ветра
  • ветрогенераторы с ротором Дарье. Они имеют две-три лопасти на плоском винте. Главное достоинство конструкции в том, что ее можно монтировать на уровне земли
  • генераторы с ротором Савониуса. Они очень эффективны, так как работа винта может быть проведена на низких скоростях, что существенно снижает расход аккумулятора
  • устройства с большим количеством лопастей на оси. Это более усовершенствованная версия ортогонального прибора. Они очень эффективны, но и цены на них ощутимо выше
  • приборы с геликоидным ротором. Они также произошли от ортогонального прибора. Благодаря своей сложной технологии лопасти на оси оказывают небольшую нагрузку на катушку. Это повышает срок эксплуатации генератора. Но и на них цена очень высока

Самыми популярными ветрогенераторами являются ортогональные и с ротором Савониуса. Почти каждый ветрогенератор с вертикальной осью работает на неодимовых магнитах. Они достаточно эффективны, при этом стоимость не слишком высока. Чтобы не переплатить при выборе ветрогенератора, можно сделать правильные расчеты своими руками.

Что нужно рассчитать при выборе генератора

Когда вы решили приобрести такой полезный прибор, как ветрогенератор, нужно учитывать следующие параметры:

  • мощность ветрогенератора на неодимовых магнитах. Если в вашей местности нет сильных ветров, вам нужен генератор с маленькой мощностью
  • направление ветра. Если ветра часто меняют направление, вам подойдет только вертикальный ветрогенератор с подвижными лопастями
  • марка. От производителя напрямую зависит цена прибора. Следует помнить, что импортный товар всегда дороже российских аналогов

Как сделать расчет ветрогенератора самостоятельно

Чтобы рассчитать мощность ветрогенератора для вашей местности, воспользуйтесь специальными формулами. Сначала нужно рассчитать количество энергии, которую сможет выработать генератор в течение года в вашей местности. Для этого нужно выполнить ряд действий:

  • произвести расчет. На основе результатов будут выбраны длина лопастей и высота башни
  • провести анализ скорости ветра в вашей местности. Это можно сделать своими руками с помощью специального прибора, наблюдая за ветром несколько месяцев, или запросить результаты с местной метеостанции

Методика расчета мощности ветреного потока своими руками подразумевает использование формулы - P*= krV 3S/2, [В т] . В этой формуле используются следующие обозначения:

  • r - плотность воздуха, которая при нормальных условиях составляет 1,225 кг/м3
  • V - скорость потока в м/с
  • S - площадь потока в квадратных метрах
  • k - коэффициент эффективности турбины ветрогенератора в значении 0,2-0,5

С помощью этих расчетов вы сможете выявить подходящую мощность для вашей местности. На упаковке ветрогенератора указано, при каком потоке ветра его работа эффективнее всего. Как правило, это значение находится в промежутке 7-11 м/с .

Ветрогенераторы (от ортогонального до Савониуса) являются оптимальным источником дополнительной или основной электроэнергии в частном доме. Если вы сделаете правильный расчет ветрогенератора своими руками, то сможете приобрести подходящий под вашу местность агрегат.

Бытовой ремонт №1
↪ ℹ Расчет ветрогенератора. ✔ Какие виды вертикальных ветрогенераторов бывают. ✔ Как самостоятельно рассчитать мощность ветрогенератора для своей местности.



Для расчета номинальной мощности ветрогенератора для организации электроснабжения частного дома или загородной недвижимости предлагаем воспользоваться следующими принципами

Для выбора ветрогенерирующей электроустановки требуется как можно более точно определить наиболее постоянное направление и среднюю скорость ветра в месте предполагаемого монтажа оборудования. При этом необходимо понимать, что лопасти ветрогенератора начинают вращение при скорости ветра от 2 м/с. Наиболее максимальный коэффициент полезного действия (КПД) установки достигается при скорости ветра 9 – 12 м/с.

Для обеспечения электроэнергией небольшого загородного дома необходим генератор с номинальной мощностью не менее 1 кВт час, вырабатываемых при скорости ветра порядка 8 м/c.

Мощность ветрогенерирующей электроустановки во многом зависит от скорости ветра и диаметра рабочего винта.

Для расчета эксплуатационных характеристик ветряка для небольшого загородного дома можно воспользоваться следующими формулами:

1.Рассчет ветрогенератора по площади вращения

P = 0,6*S*V 3 ,

S — Площадь (м 2), перпендикулярная относительно направления ветра,

V — Скорость ветра (метров в секунду).

P – Мощность генератора, кВт

2.Рассчет ветрогенератора по диаметру винта

Р = D 2 *V 3 /7000,

D — Диаметр винта (метров),

V – Скорость ветра (метров в секунду).

P – Мощность генератора, кВт

3.Более сложный расчет с учетом плотности воздушного потока

Более точный расчет можно сделать по следующей формуле:

P = ξ π R2 0,5 V3 ρ ηред ηген

ξ — коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина

R — радиус ротора, единица измерения — м

V — скорость воздушного потока, единица измерения — м / с

ρ — плотность воздуха, единица измерения — кг/м3

ηред — КПД редуктора, единица измерения — проценты

ηген — КПД генератора, единица измерения — проценты

Очевидно, что для выбора наиболее оптимального диаметра винта ветрогенератора необходимо знать среднюю скорость ветра на месте планируемой установки. Количество электроэнергии, произведенной ветряком возрастает в кубическом соотношении с повышением скорости ветра. Например, если скорость ветра увеличится в 2 раза, то кинетическая энергия, выработанная ротором, увеличится в 8 раз. Поэтому можно сделать вывод, что скорость ветра является самым важным фактором, влияющим на мощность установки в целом.

Для выбора места установки ветрогенерирующей электроустановки наиболее подойдут участки с минимальным количеством преград для ветра (без больших деревьев и построек) на расстоянии от жилого дома не менее 25-30 метров (не забывайте, что ветрогенераторы весьма громко гудят во время работы). Высота расположения центра ротора ветряка должна быть не менее чем на 3-5 метров выше ближайших построек. На линии ветреного прохода деревьев и построек быть не должно. Для расположения ветрогенератора наиболее подойдут вершины холмов или горные хребты с открытым ландшафтом.

В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:

  • ВЭС + Солнечные батареи
  • ВЭС + Дизель

Комбинированные варианты помогут решить проблемы в регионах, где ветер переменчивый или зависит от времени года, а также данный вариант является актуальным для солнечных батарей.

Расчет мощности ветрогенератора для дома или дачи
Для расчета номинальной мощности ветрогенератора для организации электроснабжения частного дома или загородной недвижимости предлагаем воспользоваться следующими

В связи с ростом цен на энергоносители, все больше владельцев частных домов обращаются к возобновляемых и нетрадиционных источников энергии (ВНИЭ), таких как ветровая, солнечная, гидроэнергия и геотермальная. Здесь расскажем, как рядовому гражданину нашей страны рационально и доступно, с финансовой точки зрения, можно воспользоваться энергией ветра.

Перед тем как будет продемонстрирован пример выбора ветроэлектростанции (ВЭС), следует узнать, каким образом поток воздуха трансформируется в электрическую энергию и сколько такой энергии можно будет получить на своем участке. По приведенной формуле можно рассчитать энергию, которая «гуляет» вашим участком:

P = V 3 ρ S

Например, на площадь, равной 3 кв.м дует воздушный поток обычной плотности со скоростью 5 м/с. При таких условиях получим:

P = V 3 ρ S = 5 3 1,25 12,5 = 1953,125

Где,
V - скорость ветра, единица измерения - м/с

S - площадь, на которую дует (пожимает) воздушный поток, единица измерения - м2

Почти 2 кВт, в идеале, если не учитывать ту часть потока, которая пойдет на завихрения, обтекание объекта и т.д. В реальных условиях максимально мы можем получить 30-40% от потенциальной энергии воздушного потока. Это ограничение связано с технологическим и физическим выполнением ветрогенератора. Более точный расчет можно сделать по следующей формуле:

P = ξ π R 2 0,5 V 3 ρ ηред ηген

Где,
ξ - коэффициент использования энергии ветра (в номинальном режиме для быстроходных ветряков достигает максимум ξmax = 0,4 ÷ 0,5), безмерная величина
R - радиус ротора, единица измерения - м
V - скорость воздушного потока, единица измерения - м / с
ρ - плотность воздуха, единица измерения - кг/м3
ηред - КПД редуктора, единица измерения - проценты
ηген - КПД генератора, единица измерения - проценты

Для следующих данных:
ξ = 0,45
R = 2 м
V = 5 м / с
ρ = 1,25 кг/м3
ηред = 0,9
ηген = 0,85

Рассчитываем:

P = ξ π R 2 0,5 V 3 ρ ηред ηген = 0,45 π 2 2 0,5 5 3 1,25 0,9 0,85

Ветроэнергетика на практике

Рассматриваемые модель имеет номинальную мощность 5кВт и следующие важные для нас технические параметры:

Технические характеристики ветроэлектростанции WE3000
Номинальная мощность генератора, кВт 3
Максимальная мощность генератора, кВт 5,1
Диаметр ротора, м 4,5
Стартовая скорость ветра, м/с 2,0
Номинальная скорость ветра, м/с 10
Высота мачты не менее, м 12

По данным инженерного центра компании WindElectric модель WE3000 имеет следующую характеристику (мощность в зависимости от скорости ветра): При скорости ветра 10 метров в секунду такая установка будет генерировать более 3кВт ч, такого количества энергии полностью хватит для маленького коттеджа, но стоит помнить, что в нашей стране далеко не всегда ветренно.

Пришло время выяснить важнейший вопрос, сколько же это будет стоить и через какое время окупится? Стоимость электроэнергии приближенно можно определить по следующей схеме:

Где,
В - полная стоимость ВЭС, единица измерения - грн, рубли, $ и т.д.
ЕВ - эксплуатационные расходы за год, единица измерения - (грн / год, рубли / год, $ / год)
Р - количество произведенной энергии за год, единица измерения - кВт время
Т - срок службы ветрогенератора в годах (считается Т = 20 лет)

Среднегодовая скорость ветра, м/с

Выработка энергии за год,

КВт.год

Срок окупаемости,

лет

ВЭС WE3000
3 1445
4 3048
5 5913
6 8935
7 12864

Ориентирование в потребностях

Совершая покупку, мы не всегда точно знаем, что с ней делать и насколько она нам необходима. В случае с ветроэлектростанцией это следует непременно выяснить.Вариант первый: Я хочу частично обеспечить свою квартиру независимым источником энергии (мой дом подключен к внешней сети. В таком случае мощность установки будет зависеть от количества энергии, которую вы хотите получать не из сети, а генерировать самостоятельно.Вариант второй: Я хочу обеспечить свою квартиру независимым источником энергии, поэтому выбираю вариант ВЭС (мой дом не подключен к внешней сети. В этом случае нужно точно знать свои потребности в электроэнергии.В чем отличие этих двух вариантов? В обоих случаях требуется ВЭС, но необходимо знать, в какой мере она будет использоваться, следовательно, какой мощности установка будет нам нужна.Подготовка к выбору ВЭС... правильнее будет написать подготовка к разговору с компанией-специалистом, кто же еще сможет предоставить услуги по установке, настройке и гарантийного обслуживания? Прежде чем сделать вам предложения, компания должна иметь некоторые сведения. Попробуем узнать о них. Это заинтересует и вас. Для двух приведенных выше вариантов подготовка имеет несколько общих пунктов:1. Потребности. Если вы решили купить сок, то сначала оцениваете силу жажды, которую чувствуете. После этого покупаете бутылку сока соответствующего объема. Для установки ВЭС нужно знать свои «аппетиты». Под «аппетитами» в нашем случае следует иметь в виду количество потребляемой электроэнергии за сутки, месяц, время года. Необходимо также установить границу верхней нагрузки (к примеру, в праздничные дни в вашем доме работают одновременно два телевизора, музыкальный центр, компьютер, освещение в нескольких комнатах, микроволновая печь и т.д.), т.е. верхний предел нагрузки - это максимальное энергопотребление вашего жилища. Необходимо также знать продолжительность этой максимальной нагрузки. Установить общее энергопотребление очень просто, однако это потребует от вас изрядной тщательности. Ваша задача - выяснить мощность каждого электроприбора в помещении и время его работы, а после внести сведения в таблицу.2. Размещение. Следующим подготовительным этапом будет ориентировочный (!) выбор места расположения ВЭС. Ориентировочный, поскольку только специалисты смогут определить наилучший вариант для Вашего индивидуального случая. Однако есть несколько пунктов, которые позволяют лучше представить возможное расположение ВЭС. Следует помнить 3 золотых правила:
* Турбулентность. Ветротурбина должна размещаться на 10 метров выше наивысшиего объекта в радиусе 100 метров (включая ЛЭП).
* По возможностью, ВЭС должны размещаться на открытых участках (берегах рек, морей, озер).
* Орография местности. Следует учитывать, что в природных ущельях, каньонах поток воздуха имеет свойство сжиматься и, как следствие, увеличивается его скорость. Подобную ситуацию можно наблюдать на пригорках.3. В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:
* ВЭС + Солнечные батареи
* ВЭС + ДизельКомбинированные варианты помогут решить проблемы в регионах, где ветер переменчивый или зависит от времени года, а также данный вариант является актуальным для солнечных батарей.



Понравилась статья? Поделитесь с друзьями!