Что такое блок цилиндров. Различные виды конструкций блоков цилиндров

Блок цилиндров - основная деталь корпуса двигателя внутреннего сгорания. Блок цилиндров служит опорой для подвижных частей кривошипно-шатунного механизма; к нему прикреплены некоторые навесные агрегаты, такие как стартер, генератор и так далее.

Популярный блок цилиндров V6 впервые использовал в своем автомобиле немецкий изобретатель Готлиб Даймлер

Блок цилиндров самая крупная корпусная деталь любого двигателя с двумя и более цилиндрами. Поскольку блок должен быть долговечным и крепким, его отливают из металла целиком. Как правило, при этом используется чугун или алюминий. Цилиндры чугунного блока представляют собой расточенные в толще металла отверстия, а в алюминиевых блоках для укрепления стенок в них . В цилиндрах перемещаются поршни, передающие энергию расширяющихся после сгорания топлива газов на коленчатый вал, преобразующий эту энергию во вращательное движение.


История создания блока цилиндров

Появившись в конце девятнадцатого века, блок цилиндров прошел длительную эволюцию, прежде чем остаться в том виде, в котором он применяется в конструкции подавляющего большинства современных моторов.

Для того, чтобы поставить шестицилиндровый двигатель под капот маленького VW Golf, компания Фольксваген вспомнила непопулярную конструкцию блока цилиндров VR6

История появления первого рядного блока цилиндров связана с немецким изобретателем Николаусом Августом Отто, который 1876 году изобрел самый эффективный для своего времени

Блок в V-образном исполнении изобрел в 1889 для постройки усовершенствованного четырехтактного двухцилиндрового двигателя.

Конструкция блока цилиндров двигателя

Блоки цилиндров имеют различные конструкции и конфигурацию разной степени сложности. Блок может быть рядным, с последовательным расположением цилиндров, V-образным с разным углом развала цилиндров или даже состоящим из двух V-образных блоков, как например у Bugatti Veyron EB 16.4. Существуют конструкции блоков с углом развала цилиндров в 180 градусов, для так называемых оппозитных двигателей, таких, как у Subaru.

Cуществуют . В них цилиндры расположены в шахматном порядке, последовательно, но в то же время с наклоном в одну из двух сторон, как у V-образного мотора. Такой синтез двух разновидностей в одном блоке позволяет улучшить его охлаждение и поднять мощность при небольшом объеме. Такая технология используется в современных двигателях компания Volkswagen. Многие владельцы автомобилей Passat, Corrado, Golf, Vento, Jetta, Sharan даже не догадываются, что у них VR-образный двигатель, так как блок прикрыт общей головкой и скомпонован так, что наклон цилиндров не бросается в глаза.

Чем больше цилиндров в блоке - тем больше вес мотора. Поэтому количество цилиндров двигателя - ограниченная величина

При отливке в блоке цилиндров предусматривают каналы для циркуляции охлаждающей жидкости и подачи масла. Сверху на блок цилиндров крепится головка блока, снизу присоединяется поддон картера. Помимо этого блок цилиндров служит основой для подсоединения КПП и всего навесного оборудования: генератора, стартера, карбюратора, и прочего.


Описанная конструкция двигателя с отдельными блоком и головкой результат длительной эволюции. Ранее блоку отводилось больше функций и то, что сегодня находится в головке блока, было расположено в нем самом. В относительно недавно выпускавшихся двигателях в блоке располагался распределительный вал, а в более ранних конструкциях там же находился и клапанный механизмам. Головка блока цилиндров в так называемых выполняла простую роль крышки с отверстиями для свечей зажигания.

Возможное количество цилиндров в блоке

Количество цилиндров это очень важный показатель двигателя и . Конструктивно увеличение количества цилиндров обсусловлено желанием инженеров увеличить мощность двигателя.

Если поднимать мощность двигателя, не увеличивая количество цилиндров, то необходимо увеличивать диаметр поршней, и делать более массивным блок цилиндров двигателя, что ведет к увеличению массы автомобиля и росту расхода топлива. Получается, что, увеличивая мощность двигателя, мы получаем проигрыш в массе, а значит, в динамике, и нужно снова увеличивать мощность. Это типичный замкнутый круг.

Картер блока цилиндров "Запорожца" выполнен из дорогостоящего авиационного алюминиевого сплава

Инженеры задачу увеличения мощности решили с помощью увеличения количества цилиндров в блоке двигателя. Поршни при этом уменьшают в диаметре, что снижает потери от трения, а значит, мощность двигателя растет.

Материал для блока цилиндров

На сегодняшний день изготавливают чугунные, алюминиевые и магниевые блоки цилиндров с добавлением различных сплавов.

Выбор материала обусловлен присущими ему свойствами. Например, блок из чугуна самый прочный, более пригоден для форсирования, и менее других чувствителен к перегреву.

Блоки из магниевого сплава сочетают в себе твердость чугуна и легкость алюминия, но так как магний редок и дорог, он применяется в основном для автоспорта. Как ни удивительно, из авиационного магниевого сплава МЛ-5 был выполнен , на который ставились чугунные или алюминиевые цилиндры.

Блоки из алюминия отличаются малым весом и хорошей способностью к охлаждению, но требуют усиления стенок цилиндров. Если в алюминиевый цилиндр вставить поршня из стали или чугуна, стенки очень быстро износятся. Применить алюминий для изготовления поршней также нельзя, так как они сразу же прикипят к зеркалу цилиндра, и двигатель заклинит.

Блоки цилиндров некоторых моделей BMW не поддаются капремонту, потому что внутренние стенки цилиндров покрыты невозобновляемым составом - Никасилом

По этим причинам алюминиевые блоки на первом этапе их применения оснащали из серого чугуна. Однако слабо закрепленные «мокрые» гильзы из чугуна быстро разбивали алюминиевый блок, поэтому он плохо переносил форсировку и был чувствителен к перегреву.

На смену «мокрым» гильзам пришли тонкостенные «сухие» гильзы. Подобная технология предусматривает запрессовку тонкостенных чугунных или композитных гильз в тело блока, где они сидят «как влитые».

Альтернативные решения

Существует и несколько альтернативных решений упрочнения стенок цилиндров с применением новейших технологий. Это метод нанесения кристаллов кремния на внутреннюю поверхность цилиндра или, к примеру, применение готовых алюминий-кремниевых гильз по технологии Locasil фирмы Kolbenschmidt.

Еще одна технология, предусматривает нанесение на алюминиевые стенки цилиндра никелевого покрытия с напылением кристаллов карбида кремния. Технология в основном применялась в двигателях дорогих спортивных автомобилей, в частности, болидов Формулы-1, не подлежащих многоразовому капитальному ремонту.

На протяжении многих десятков лет моторы изготавливали из самых обычных материалов — стали, чугуна, меди, бронзы, алюминия. Совсем немного пластика, иногда какие-то мелкие элементы, вроде корпусов карбюраторов, — из магниевых сплавов. На волне тенденции к всемерному облегчению конструкций и увеличению мощности при улучшении экологической составляющей состав материалов с тех времен заметно изменился. Из чего же сегодня делают двигатели? Разбираемся.

Большая часть автовладельцев наверняка знает главный тренд современного автомобилестроения: увеличение мощности двигателя при постоянном уменьшении его объема и массы. Секрет такого сочетания кроется в том числе в новых материалах и конструктивах. Ну и, разумеется, тщательной проработке всех элементов силового агрегата, а также уже не скрываемом отсутствии избыточных (читай: невыгодных) запасов прочности.

Как ни странно, всевозможные нанотрубки и прочий хай-тек, о котором постоянно говорят в СМИ, в моторостроении на самом деле почти не применяются. В серийных моторах самыми дорогими и сложными материалами являются кремнийникелевые покрытия, металлокерамический композит (например, известный как FRM у Honda), различные полимерно-углеродные композиции и постепенно появляющиеся в серийных двигателях титановые сплавы, а также сплавы с высоким содержанием никеля, например Inconel. В целом же двигателестроение остается очень консервативной областью машиностроения, где смелые эксперименты в серийном производстве не приветствуются.

Прогресс обеспечивается в основном «тонкой настройкой» и применением давно известных технологий по мере их удешевления. Основная масса серийных агрегатов состоит в основном из чугуна, стали и алюминиевых сплавов — по сути, самых дешевых материалов в машиностроении. Однако тут все же есть место для новых технологий.

Самая крупная деталь любого мотора — блок цилиндров. Она же самая тяжелая. Долгие десятки лет основным материалом для блоков служил чугун. Он достаточно прочен, хорошо льется в любую форму, его обработанные поверхности обладают высокой износостойкостью. Список достоинств включает и невысокую цену. Современные моторы небольшого рабочего объема по-прежнему льются из чугуна, и вряд ли в ближайшее время индустрия полностью откажется от этого материала.

Основная задача в совершенствовании сплавов чугуна — это сохранение высокой твердости поверхности при улучшении его вспомогательных качеств, иначе это может привести к необходимости использования чугунных же гильз для блока цилиндров из более износостойкого сплава. Так изредка делают, но в основном на грузовых моторах, где эта технология финансово оправданна.

Алюминий в качестве материала блока применяется также очень давно и совершенствуется примерно в том же направлении. Усилия направлены в основном на улучшение возможностей его обработки, на снижение коэффициента расширения при сохранении необходимой пластичности материала, повышение необходимых аспектов прочности сплавов.

Также развиваются технологии использования вторичного алюминия низкой очистки. Для таких сплавов применяются технологии, отличные от литья, причем налицо тенденция к изготовлению из алюминия блоков цилиндров более компактных моторов. Например, двигатель Volkswagen серии EA211 сегодня имеет алюминиевый блок, который оказался на 40% легче чугунного.

Магниевые сплавы значительно менее популярны. Они легче алюминиевых, но имеют значительно более низкую коррозийную стойкость, не переносят контакта с горячей охлаждающей жидкостью, со стальными крепежными деталями повышенной температуры. На рядных шестицилиндровых блоках моторов BMW серий N52 и N53, например, из магниевого сплава выполнена только внешняя часть блока, «рубашка» системы охлаждения. Для сравнительно длинного блока шестицилиндрового мотора это дает выигрыш в массе порядка 10 кг по сравнению с цельноалюминиевой конструкцией. Также магниевые сплавы используют для блок-картеров моторов с отъемными цилиндрами. В основном это двигатели мотоциклов.


Компоненты двигателя

Если с самой большой деталью мотора новые технологии и материалы не очень «дружат» в целом, то в частностях возможны интересные сюрпризы. Гильзы цилиндров у любого блока являются точкой приложения всех новейших технологий и материалов. Высокопрочный чугун, методы поверхностного упрочнения алюминиевых высококремнистых сплавов, гальванические покрытия на основе сплава карбида кремния с никелем, металлокерамические матрицы и стальное напыление широко используются даже на серийных моторах. Про чугун и высококремнистый алюминий говорить не будем, все же сами технологии не только старые, но и массовые. А вот про остальные материалы лучше рассказать чуть подробнее.

Упрочненные чугунные гильзы по технологии CGI (Compacted Graphite Iron) появились для реализации экстремально высокой степени форсирования у дизельных моторов. Этот чугун сильно отличается от распространенного серого чугуна. У него на 75% выше прочность на разрыв, на 40% выше модуль упругости, и он в два раза устойчивее к знакопеременным нагрузкам. А его сравнительно невысокая стоимость и прочность позволяют создавать литые чугунные блоки с массой меньше, чем у алюминиевых. Но в основном его применение ограничено гильзами и коленчатыми валами. Гильзы получаются очень тонкими, теплопроводными и при этом столь же технологичными и надежными, как обычные гильзы из чугуна. А коленчатые валы по прочности соперничают с коваными стальными при заметно меньшей себестоимости.

Покрытие по технологии Nicasil , в общем-то, не редкость и далеко не новинка, но оно остается одним из самых высокотехнологичных и перспективных в своей сфере. Изобрели его еще в 1967 году для роторно-поршневых двигателей, и засветиться в массовом автомобилестроении оно успело. Porsche его применял для гильз цилиндров с 1970-х, а в 1990-е его попытались применить и на более массовых моторах, например в BMW и Jaguar, но недостатки технологии и высокая цена заставили отказаться от него в пользу более дешевых методов поверхностного упрочнения высококремниевых сплавов, например по технологии Alusil.


Причем более вероятной причиной отказа является как раз повышенная стоимость блоков цилиндров с этим покрытием, связанная с низкой технологичностью процесса гальванического нанесения и высоким процентом не выявляемого сразу брака, который потом успешно списали на высокосернистые бензины.

Тем не менее это покрытие все еще остается лучшим выбором для создания рабочей поверхности в любом мягком металле, потому под различными торговыми наименованиями применяется в массовом и особенно гоночном двигателестроении. Например, под маркой SCEM в моторах Suzuki. Его недостатки в основном связаны с очень высокой стоимостью обработки и слабой приспособленностью к массовому производству при использовании с крупными многоцилиндровыми блоками.

Металлокерамическая матрица (MMC ) , более известная как FRM в моторах Honda, — еще один оригинальный и интересный материал. Например, двигатель на суперкаре NSX имел гильзы, выполненные по такой технологии. Опять же технология далеко не новая, но, как и материал, очень перспективная. Покрытие типа Nicasil тоже относится к MMC, но его приходится наносить гальваническим методом, и в качестве матрицы выступает достаточно твердый никель.

В технологии FRM материалом матрицы служит алюминий, а MMC получается в процессе заливки гильзы из волокнистого материала на основе карбоновой нити в алюминиевый блок. Использование углеродного волокна более технологично. К тому же матрица получается намного более толстой, чуть более мягкой, намного более упругой и абсолютно интегрированной в материал блока. Отслоение, как это происходило с Nicasil, попросту невозможно. Задиры и локальные повреждения в силу структуры материала ему почти не страшны, а в случае износа цилиндр можно расточить благодаря большому запасу по толщине.


Минусы у такого покрытия тоже имеются. Во-первых, немалая цена, во-вторых, жесткое отношение к поршневым кольцам, поскольку его структура плохо «настраивается». Тут не создать полноценной сетки хона, правда, масло хорошо удерживается в волокнах и без того. Края волокон очень жесткие, и даже сверхтвердые кольца имеют ограниченный ресурс, а поршень в местах контакта интенсивно изнашивается при малейшем биении, что подразумевает использование поршней с минимальным зазором и очень короткой юбкой. К тому же покрытие очень маслоемкое. В итоге у моторов постоянно наблюдался повышенный расход масла, что на определенном этапе не позволило выполнять жесткие экологические требования.

Впрочем, сейчас эта проблема уже не актуальна, новые катализаторы и новые поколения малозольных масел позволяют об этом не беспокоиться. Ну и, разумеется, цена нанесения покрытия такого типа заметно выше, чем у алюсила или чугунных гильз, но все же меньше, чем у Nicasil-подобных материалов.

Покрытия MMC разных типов также используются в целом ряде деталей двигателей. Например, в седлах клапанов в ГБЦ, упрочнениях крайних постелей распредвалов, особо нагруженных местах креплений элементов конструкции. Это позволяет широко применять цельноалюминиевые детали и снижать массу конструкции за счет упрощения. Некоторые детали двигателей могут иметь крупные элементы из MMC, например клапаны. Но это и сейчас удел не серийных конструкций.

Титановые сплавы также давно пытаются использовать в конструкции машин. В двигателях этот прочный, легкий и очень эластичный материал с превосходной химической стойкостью применяется очень ограниченно в силу высокой стоимости. Но можно найти серийные конструкции с деталями из титана. Титановые шатуны, например, давно устанавливаются в моторах Ferrari и тюнинговом подразделении AMG. Еще титан — неплохой выбор для пружин, шайб, рокеров и прочих элементов ГРМ, деталей теплообменников EGR, а также разных крепежных элементов. Кроме того, он используется для производства рабочих элементов высокопроизводительных турбин, а иногда —— для производства клапанов и даже поршней.

Теоретически детали из высококремнистых титановых сплавов с высоким содержанием интерметаллидов и сицилидов могут применяться в двигателях, но у большинства титановых сплавов наблюдается серьезная потеря прочности уже при температурах свыше 300 градусов — изменение пластичности в больших пределах и большой коэффициент расширения, что не позволяет создавать из них долговечные детали с низкой массой. Ограниченное применение имеет в двигателестроении и 3D-печать из титановых сплавов, например для создания выпускных систем на спорткарах.

А вот покрытия из нитрида титана — одни из самых популярных средств упрочнения поршневых колец. Этот материал отлично работает по кремниевому упрочненному слою гильз цилиндров. Его же используют как напыление на фаски клапанов, в том числе титановых, на торцы толкателей клапанного механизма и другие узлы двигателя. Начиная с 1990-х годов использование этого метода упрочнения неуклонно возрастает, и он вытесняет хромирование, азотирование и ТВЧ-закалку. Также нитрид титана является перспективным типом покрытия для гильз цилиндров: он может наноситься методом PA-CVD (плазмохимическое осаждение из газовой фазы), а значит, такие технологии могут стать серийными в ближайшее время, если будет спрос на новые износостойкие покрытия цилиндров.

Уже упомянутая 3D-печать также активно применяется для создания высокопрочных и высокоточных жаростойких деталей сплав Inconel. Это семейство никельхромовых жаростойких сплавов давно служит материалом для создания выпускных клапанов, верхних компрессионных колец, пружин и даже выпускных коллекторов, корпусов турбин и крепежного материала для высокотемпературного применения.

В последние годы, в связи с развитием технологий 3D-печати и активным использованием в них Inconel-сплавов, мелкосерийные ДВС все чаще обзаводятся деталями из этого очень перспективного материала. Рабочий диапазон деталей из него минимум на 150-200 градусов выше, чем у самых жаростойких сталей, и доходит до 1200 градусов. Как материал упрочнения сплавы Inconel используются серийно уже достаточно давно, так, в моторах Mercedes-Benz покрытие из Inconel применяется на моторах серий M272/M273.

Пластмассы также продолжают внедрять в конструкции двигателей. Выполненные из пластика элементы системы впуска и охлаждения — дело уже привычное. Но дальнейшее расширение номенклатуры маслостойких и теплостойких пластмасс с низким короблением позволило создать пластмассовые картеры ДВС, клапанные крышки, направляющие, корпуса малых конструкций внутри двигателя. Концепты моторов с блоком цилиндров из пластмассы, а точнее, из полимерно-углеродных композиций, уже были представлены публике. При незначительно меньшей прочности, чем у легких сплавов, пластик в производстве обходится дешевле и значительно лучше перерабатывается.

Каков итог?

Изучение вопроса применяемости материалов в двигателестроении показывает четкую направленность: для снижения массы и улучшения других характеристик применение каких-то суперматериалов либо не особо требуется, либо невозможно в принципе в силу физических и химических свойств. Развитие технологий идет путем эволюционным — усовершенствования как самого производства, так и традиционных материалов, реорганизации рабочего процесса и конструкторской оптимизацией. Так что даже в среднесрочной перспективе мы вряд ли увидим революцию в производстве ДВС, скорее речь будет идти о постепенном отказе от этого типа двигателя в принципе в пользу электротехнологий, хотя и там пока не наблюдается бурного технологического прорыва.


У алюминиевых блоков цилиндров различные концепции и способы изготовления конкурируют друг с другом. При определении параметров блоков

цилиндров соответствующие технические и экономические преимущества и недостатки должны тщательно взвешиваться друг относительно друга.

Нижеследующие главы дают обзор различных видов конструкций блоков цилиндров.

Монолитные блоки

Под монолитными блоками понимаются конструкции блоков цилиндров, которые не имеют ни мокрых гильз, ни привёрнутых основных плит в форме корпуса коренных подшипников - опорной плиты (Bedplate) (изобр. 1). Для получения определённых поверхностей или прочности монолитные блоки могут иметь, однако, соответствующие заливаемые части в зоне отверстий цилиндров (вставки из серого чугуна, LOKASIL®-Preforms), а также заливаемые части из серого или ковкого чугуна и усиления волокном в зоне отверстий под коренные подшипники. Последние, однако, не отражают ещё состояния техники.

Изображение 1
PSA 4 Zyl. (ряд)

Блоки из двух частей (с опорной плитой)

У данной конструкции крышки коренных подшипников коленчатого вала размещены совместно в отдельной опорной плите (изобр. 2). Опорная плита соединена резьбовыми соединениями с картером и усилена залитым в алюминий шаровидным графитом с целью уменьшения люфта в коренных подшипниках, соответственно, чтобы компенсировать большее удельное температурное расширение алюминия. Таким путём достигаются чрезвычайно жёсткие конструкции блоков цилиндров. Как и у монолитных блоков цилиндров, здесь в зоне отверстий цилиндров могут также быть предусмотрены заливаемые части.


Изображение 2
Audi V8

Конструкция "Open-Deck" с отдельными, свободно стоящими цилиндрами

У данной конструкции рубашка охлаждения открыта к плоскости разъёма головки блока цилиндров, и цилиндры стоят свободно в блоке цилиндров (изобр. 3). Перенос тепла от цилиндров к охлаждающему веществу, благодаря омыванию со всех сторон, равномерный и выгодный. Относительно большое расстояние между цилиндрами влияет, однако, у многоцилиндровых двигателей отрицательно на их конструктивную длину. Благодаря открытой кверху, относительно просто сконструированной полости для охлаждающего вещества, при изготовлении можно отказаться от применения песчаных стержней. Поэтому блоки цилиндров могут изготавливаться как методом литья под низким давлением, так и литьём под давлением.

Конструкция "Open-Deck" с вместе отлитыми цилиндрами

Логическим выводом для уменьшения конструктивной длины блоков цилиндров со свободно стоящими цилиндрами является уменьшение расстояния между цилиндрами. Из-за сдвигания цилиндров они должны быть, однако, исполнены в совместной отливке (изобр. 4). Это положительно влияет не только на конструктивную длину двигателей, но при этом увеличивается и жёсткость в верхней части цилиндров. Таким путём, можно, напр., у шестицилиндрового рядного двигателя сэкономить 60-70 мм на конструктивной длине. Перемычка между цилиндрами может быть при этом уменьшена на 7-9 мм. Данные преимущества перевешивают тот недостаток, что при охлаждении рубашка охлаждения между цилиндрами получается меньше.


Изображение 4
Volvo 5 Zyl. (Diesel)

Конструкция "Closed-Deck"

При данной концепции блока цилиндров, в противоположность конструкции "Open-Deck", верх цилиндров до отверстий для входа воды со стороны головки блока цилиндров закрыт (изобр. 1). Это влияет особенно положительно на уплотнение головки блока цилиндров. Преимущества данной конструкции имеются, в особенности, и тогда, если существующий блок цилиндров из серого чугуна должен быть переведён в алюминий. Из-за сравнимой конструкции (уплотняемая поверхность головки блока цилиндров) головка блока цилиндров и уплотнение головки блока цилиндров не должны претерпеть никаких изменений, соотв., только незначительные.

По отношению к конструкции "OpenDeck" исполнение "Closed-Deck", естественно, труднее изготовить. Причиной является закрытая рубашка охлаждения и из-за этого необходимый песчаный стержень рубашки охлаждения. Также выдерживание узких полей допусков толщины стенок цилиндров усложняется при применении песчаных стержней. Блоки цилиндров "ClosedDeck" могут изготавливаться как методом свободного литья в формы, так и методом литья под низким давлением.

По причине соместно отливаемых цилиндров и возникающей благодаря этому более высокой жёсткости в верхней части цилиндров данная конструкция имеет, по сравнению с конструкцией "Open-Deck", большие резервы нагрузки.


Изображение 1
Mercedes 4 Zyl. (ряд)

Алюминиевые блоки цилиндров с мокрыми гильзами

Данные блоки цилиндров изготавливаются большей частью литьём из более дешёвого алюминиевого сплава и оснащаются мокрыми гильзами цилиндров из серого чугуна. Предпосылкой применения данной концепции является овладение конструкцией "Open-Deck" со связанной с ней проблематикой уплотнения. При этом речь идёт о конструкции, которая больше не применяется при серийном изготовлении двигателей легковых автомобилей. Типичным представителем производства KS был V6- блок PRV (Peugeot/Renault/Volvo) двигателя (изобр. 2).

Такие блоки цилиндров применяются в настоящее время только в спортивном и гоночном двигателестроении, где проблема затрат отступает, скорее, на второй план. Там применяются, однако, гильзы не из серого чугуна, а высокопрочные мокрые алюминиевые гильзы с рабочими поверхностями цилиндров, покрытыми никелем.


Изображение 2
PRV V6

Исполнения рубашки охлаждения

При переходе от блоков цилиндров из серого чугуна к блокам из алюминия стремились ранее к тем же конструктивным размерам при исполнении из алюминия, которые уже существовали в исполнении из серого чугуна. По этой причине глубина рубашки охлаждения (размер "X"), окружающей цилиндр, соответствовала у первых алюминиевых блоков вначале только до 95% длины отверстий цилиндров (изобр. 3).

Благодаря хорошей теплопроводности алюминия как рабочего материала глубина рубашки охлаждения (размер "X") смог быть выгодно уменьшен до величины от 35 до 65 % (изобр. 4). Благодаря этому был уменьшен не только объём воды, и, тем самым, вес двигателя, но и также был достигнут более быстрый нагрев воды для охлаждения. Благодаря укороченному, сберегающему мотор времени нагрева сокращается также время нагрева катализатора, что особенно благоприятно влияет на выделение вредных веществ.

В производственно-техническом отношении уменьшенные глубины рубашки охлаждения также принесли преимущества. Чем короче стальные литейные стержни для рубашки охлаждения, тем меньше тепла воспринимают они в процессе литья. Это сказывается как в большей стойкости формы, так и в увеличении производительности, благодаря уменьшению такта выпуска.


Изображение 3


Изображение 4

Болтовое соединение головки блока цилиндров


1. Усилие болта болтов крепления головки блока цилиндров /2. Уплотняющее усилие между головкой блока цилиндров и её уплотнением / 3. Деформация цилиндра (представлено очень утрированно) / 4. Находящаяся вверху резьба болта /5. Глубоко лежащая резьба болта

Для того, чтобы деформацию цилиндра при монтаже головки блока цилиндров поддерживать по возможности малой, бобышки под болты - утолщения для резьбовых отверстий болтов крепления головки блока цилиндров - связаны с наружной стенкой цилиндра. Прямой контакт со стенкой цилиндра вызвал бы несравненно большие деформации при затяжке болтов. Дальнейшие улучшения даёт также глубоко лежащая резьба. На изображениях 1 и 2 показаны различия деформаций цилиндров, получающиеся при находящейся вверху и глубоко лежащей резьбе болта.

Дальнейшие возможности - в применении заливаемых стальных гаек вместо обычных резьбовых отверстий, с целью избежать проблем перекоса и прочности (особенно у дизельных двигателей прямого впрыска). У некоторых конструкций применяются длинные стяжные болты,практически провёрнутые через плиту блока цилиндров (изобр. 3) или прямо соединённые с опорой подшипников (изобр. 4).

1. Подкладная шайба

2. Болт крепления головки блока цилиндров

3. Стальная резьбовая вставка

4. Стяжной болт

5. Крышка коренных подшипников

Изображение 3

Изображение 4

1. Подкладная шайба

2. Стяжной болт

3. Опора подшипников

4. Крышка коренных подшипников

Монтажные отверстия поршневого пальца в стенке цилиндра

У оппозитных двигателей возникают, в силу их конструктивных особенностей, при монтаже проблемы сборки поршневых пальцев одного ряда цилиндров. Причиной этого является то, что обе половины картера должны быть соединены болтами для того, чтобы смонтировать поршни второго ряда цилиндров, соотв., соединить шатуны с соответствующими шатунными шейками. Поскольку после соединения болтами обеих половин картера не будет больше доступа к коленчатому валу, шатуны без поршней приворачиваются к соответствующим шатунным шейкам, а поршни монтируются после соединения болтами обеих половин картера. Недостающие ещё поршневые пальцы вдвигаются после этого через поперечные отверстия в нижней части цилиндра (изобр. 5) для соединения поршней с шатунами. Монтажные отверстия пересекают рабочие поверхности цилиндров в зоне, которую не проходят поршневые кольца.

Вентиляционные отверстия картера

Изображение 1


Изображение 2

Более новые картеры снабжаются вентиляционными отверстиями поверх коленчатого вала и под цилиндрами (изобр. 1 и 2).

Вентиляции в зоне кривошипов при вытянутых вниз боковых стенках и связанных с ними элементами жёсткости коренных подшипников препятствуется. Благодаря вентиляционным отверстиям вытесненный воздух, который при движении поршня от верхней мёртвой точки в направлении нижней мёртвой точки находится под поршнем, может уйти в сторону и, тем самым, вытесняется туда, где поршень как раз движется в направлении верхней мёртвой точки. Тем самым воздухообмен осуществляется быстрее и эффективнее, поскольку воздуху больше не нужно проходить длинного пути вокруг коленчатого вала. Благодаря уменьшившемуся сопротивлению воздуха достигается, кроме того, значительное увеличение мощности. В зависимости от расстояния цилиндров до коленчатого вала, вентиляционные отверстия находятся либо в зоне прилегания коренных подшипников ниже рабочих поверхностей цилиндров, либо в зоне рабочих поверхностей цилиндров или где-либо между данными зонами.

Блок цилиндров двигателя - это деталь 2-х и более цилиндровых поршневых двигателей. Блок цилиндров выполняет две основные функции: он является корпусом для размещения всех узлов, механизмов и деталей двигателя. Второе – блок цилиндров основа для навесных частей двигателя: картер, головка блока цилиндров.

Материал изготовления блока цилиндров

Чугун – традиционный материал, из которого до недавнего времени изготавливались блоки. Чугун применяется с добавками: никель, хром. Положительные качества чугунного блока цилиндров: меньшая чувствительность к перегреву, жёсткость, необходимая при высокой степени . Минус – большая масса, которая влияет на динамику легкового автомобиля.

Алюминий – занимает второе место в изготовлении блоков цилиндров. Положительными качествами алюминиевого блока являются: лёгкость и лучшее охлаждение. Как недостаток отмечается проблема с подбором материала, из которого должен выполняться цилиндр.

В современных условиях, для изготовления цилиндров в алюминиевые блоки цилиндров двигателя разработаны технологии: Locasil – запрессовка гильз из алюминий - кремния, Nicasil – в виде никелевого покрытия на алюминиевой поверхности блока цилиндров.

Недостатком никасиловой технологии считается то, что при прогаре поршня или обрыве шатуна, никелевое покрытие выходит из строя и блок цилиндров не подлежит ремонту. Он меняется в сборе. В отличие от чугунного, который подвергается и ремонтным комплектом.

Блок цилиндров из магниевого сплава сочетает в себе твердость чугунного, и лёгкость алюминиевого. Но, такой блок очень дорогое удовольствие и на конвейерном производстве не применяется.

Каждый из материалов имеет свои плюсы и минусы, поэтому однозначно заявлять какой из них лучше, некорректно.

Основные требования к блоку цилиндров двигателя

  • отверстия всех постелей должны обеспечивать соосность;
  • постели должны иметь одинаковый диаметр. Исключение составляют специальные конструкции;
  • оси постелей и плоскости блока цилиндров должны быть идеально параллельны.

Обзор основных деталей блока цилиндров

Цилиндр двигателя. Основной деталью цилиндра двигателя является гильза. Применяются два типа гильз:

  • гильзы, впрессованные непосредственно в блок цилиндров. Как правило, в алюминиевых блоках;
  • которые подразделяются на «мокрые» и «сухие».

Головка блока цилиндров. В её состав входят: камера сгорания, места крепления ГРМ, рубашка охлаждения и каналы смазки, резьбовые отверстия для свечей (форсунок), отверстия для впускных и выпускных каналов.

На блоке цилиндров имеются опорные поверхности для установки коленчатого вала , к верхней части блока, как правило, крепится головка блока цилиндров, нижняя часть является частью картера . Таким образом, блок цилиндров является основой (корпусной) деталью двигателя, к которой так или иначе крепятся остальные его агрегаты и узлы.

Энциклопедичный YouTube

  • 1 / 5

    Собственно цилиндры в блоке цилиндров могут являться как частью отливки блока цилиндров, так и быть отдельными сменными втулками («гильзами»), которые могут быть «мокрыми» или «сухими» - в зависимости от того, контактируют ли они непосредственно с охлаждающей жидкостью в рубашке охлаждения двигателя. Помимо функции корпусной детали, блок цилиндров несет дополнительные функции: является основной частью системы смазки - по каналам в блоке цилиндров масло под давлением подается к местам смазки, а в двигателях жидкостного охлаждения - и системы охлаждения: охлаждающая жидкость циркулирует внутри блока цилиндров по полостям, образующим рубашку охлаждения.

    Стенки внутренней полости цилиндра служат также направляющими для поршня при его перемещениях между крайними поло­жениями. Поэтому длина образующих цилиндра предопределяется величиной хода поршня.

    Материал для изготовления блоков цилиндров

    Износ цилиндров автомобильных двигателей является следствием комплексного воздействия на стенки цилиндра многочисленных быстротекущих физических и химических процессов, которые по характеру проявления разделяются на три основных вида износа: эрозивный , возникающий вследствие механического истирания, схватывания и других разрушающих процессов при непосредственном контакте металлических трущихся поверхностей; коррозионный , возникающий при всякого рода окислительных процессах на поверхностях трения; абразивный, вызывающий разрушение поверхностей трения при наличии между ними твердых или, как говорят, абразивных частичек, в том числе - и продуктов износа.

    Цилиндр работает в условиях переменных давлений в надпоршневой полости. Внутренние стенки его соприкасаются с пламенем и горячими газами, раскаленными до температуры 1500-2500 °С. Средняя скорость скольжения поршневых колец по стенкам цилиндра в автомобильных двигателях достигает 12-15 м/сек. Поэтому материал, употребляемый для изготовления внутренних стенок цилиндров, должен обладать большой механической прочностью, а сама конструкция стенок - повышенной жесткостью. Стенки цилиндров должны хорошо противостоять истиранию при ограниченной смазке и обладать общей высокой стойкостью против других возможных видов износа (абразивного, коррозионного и некоторых разновидностей эрозии), уменьшающих срок службы цилиндров. Ко всему этому, материалы, применяемые для изготовления цилиндров, должны обладать хорошими литейными свойствами и легко обрабатываться на станках.

    В соответствии с этими требованиями, в качестве основного материала для изготовления блоков цилиндров применяют перлитный серый чугун с не­большими добавками легирующих элементов (никель, хром и др.). Применяют также высоколегированный чугун, сталь, магниевые и алюминие­вые сплавы. Блоки, изготовленные из этих материалов, отнюдь не равноценны по своим свойствам.

    Так, чугунный блок наиболее жёсткий, а значит - при прочих равных выдерживает более высокую степень форсирования и наименее чувствителен к перегреву. Теплоёмкость чугуна примерно вдвое ниже, чем алюминия, а значит двигатель с чугунным блоком быстрее прогревается до рабочей температуры. Однако, чугун весьма тяжёл - в 2,7 раза тяжелее алюминия, склонен к коррозии, а его теплопроводность примерно в 4 раза ниже, чем у алюминия, поэтому у двигателя с чугунным картером система охлаждения работает в более напряжённом режиме.

    Алюминиевые блоки цилиндров лёгкие и лучше охлаждаются, однако в этом случае возникает проблема с материалом, из которого выполнены непосредственно стенки цилиндров. Если поршни двигателя с таким блоком сделать из чугуна или стали, то они очень быстро износят алюминиевые стенки цилиндров. Если же сделать поршни из мягкого алюминия, то они просто «схватятся» с алюминиевыми стенками, и двигатель заклинит.

    Поэтому на первом поколении двигателей с алюминиевым блоком применяли вставленные в блок «мокрые» гильзы из серого чугуна, «плавающие» в охлаждающей жидкости и служащие непосредственно в качестве стенок цилиндров. Эта конструкция, разработанная в 1930-х годах, получила широкое распространение в 1950-х, причём только в Европе, где её использовали производители спортивных и дорогих представительских машин (BMW , Jaguar , Rover , некоторые итальянские фирмы), и в СССР, где алюминиевые блоки цилиндров имели применяться практически все автомобили собственной разработки, включая грузовики - что, помимо вышеуказанных преимуществ, давало возможность капитально ремонтировать блок цилиндров просто заменяя гильзы, обеспечивая большой экономический эффект.

    Тем не менее, у неё были и свои недостатки. Алюминиевый блок с мокрыми гильзами - особенно более технологичный в изготовлении с нижней фиксацией гильз - получается ощутимо менее жёстким, чем цельнолитой чугунный, вследствие чего чувствителен к перегреву и хуже переносит форсировку. Алюминий намного дороже чугуна, а технология изготовления гильзованного алюминиевого блока цилиндров намного более трудоёмка и существенно усложняет производство. Кроме того, некоторые алюминиевые сплавы отличаются высокой склонностью к коррозии при использовании определённых марок антифризов, что порой создавало существенное неудобство в эксплуатации (в условиях плановой экономики СССР эта проблема была решена просто - принятием единого госстандарта на нейтральную к алюминиевым сплавам охлаждающую жидкость ТОСОЛ). Поэтому до 80-х - 90-х годов основным материалом для изготовления блоков цилиндров, особенно на американских автомобилях, всё же оставался чугун.

    Иногда в двигателях с чугунным блоком цилиндров также использовались съёмные гильзы цилиндров. Это давало всё то же преимущество с точки зрения простоты капитального ремонта, а также - возможность выполнить гильзы из более качественного и износоустойчивого, но и более дорого, материала, чем сам чугунный блок. Например, в СССР гильзы цилиндров обычно делали из специального кислотоупорного чугуна (или снабжали вставками из этого материала), существенно снижающего коррозию стенок цилиндров при взаимодействии с конденсирующимися после прекращения работы мотора продуктами сгорания топлива.

    В 1980-х годах стала получать всё большее распространение технология, при которой в алюминиевый блок запрессовывались тонкостенные «сухие» чугунные или композитные гильзы, со всех сторон окружённые алюминием. Такие двигатели сегодня достаточно распространены. Тем не менее, такие блоки также не были лишены недостатков, так как коэффициенты температурного расширения чугуна и алюминия не совпадают, что требует особых мер для предотвращения отрыва гильзы от блока при прогреве мотора и потенциально снижает его долговечность.

    Альтернативный подход предполагает цельноалюминиевый блок, стенки цилиндров которого специально упрочняют. Например, на примере этого направления - двигателе Chevrolet Vega 1971 года - блок отливался из сплава с содержанием до 17 % кремния (фирменное название Silumal), а специальная обработки стенок цилиндров химическим травлением обогащала их поверхностные слои кристаллами кремния (специально подобранного состава кислота вымывала алюминий с поверхности стенки, не трогая кремний), доводя до требуемой твёрдости (кремний сам по себе намного твёрже чугуна). Тем не менее, опыт оказался неудачным: мотор оказался очень чувствителен к качеству смазочных материалов и перегреву, имел неудовлетворительный ресурс и часто полностью выходил из строя намного раньше исчерпания нормативного ресурса из-за износа стенок цилиндра, восстановление которых вне заводских условий оказалось, в отличие от привычных в то время чугунных блоков, невозможно. Это повлекло за собой громкий скандал и миллионные убытки для компании GM.

    Впоследствии данная технология была доведена до совершенства европейскими производителями - Mercedes-Benz , BMW , Porsche , Audi , и в 80-х - 90-х годах была применена на их серийных моделях. Такой блок можно даже в ограниченных пределах растачивать, так как толщина упрочненного слоя алюминия с повышенной концентрацией кристаллов кремния составляет порядка нескольких микрон. Тем не менее, чувствительность цельноалюминиевых блоков к перегреву и качеству смазочных материалов никуда не делась - такие двигатели требуют высокой культуры эксплуатации и обслуживания, а за их температурным режимом зорко следит управляющая электроника.

    Сравнительно недавно немецкая фирма Kolbenschmidt разработала и технологию, при которой в обычный алюминиевый блок запрессовываются готовые алюминий-кремниевые гильзы, имеющие упрочненные стенки с повышенным (до 27 %) содержанием кремния (технология Locasil), - это позволяет снизить себестоимость и частично решает проблему ремонтопригодности.

    Альтернативой является технология Nicasil - никелевое покрытие на алюминиевых стенках цилиндров с напылением кристаллов карбида кремния. Принцип работы здесь тот же - повышение твёрдости алюминиевых стенок цилиндров. Эту технологию ограниченно применяли ещё в 60-е - 70-е годы для двигателей очень дорогих спортивных автомобилей, в частности - используемых в Formula 1. Из современных двигателей такие блоки имели моторы М60 и М52 фирмы BMW, причём их продажи в некоторых странах сопровождались скандалом - «никасил» разрушался от реакции с некоторыми сортами топлива, содержащими повышенную концентрацию серы (что характерно, в частности, для некоторых регионов США и России). Главный же недостаток «никасила» - тонкое никелевое покрытие легко повреждается например при обрыве шатуна или прогаре поршня, и уже не подлежит восстановлению. Капремонт также невозможен - только замена блока (поршней ремонтного размера для таких моторов не делают).

    Блоки из магниевого сплава сочетают твёрдость чугунных и лёгкость алюминиевых. Но магниевые литейные сплавы относительно дорогие, поэтому используется крайне нечасто, и обычно на узкоспециализированных спортивных моторах. Некоторое исключение - двигатель «Запорожца» с картером из авиационного магниевого сплава МЛ-5 (и отдельными чугунными цилиндрами).

    На заре автомобилизма могли также использоваться бронзовые блоки цилиндров, что обусловлено высокой технологичностью этого сплава при литье.

    См. также

    • Конфигурация двигателя внутреннего сгорания - это инженерный термин, обозначающий расположение главных компонентов поршневого двигателя внутреннего сгорания (ПДВС).
    • Картер является основной корпусной деталью двигателя. Изолированное внутреннее пространство картера образует самую большую полость в двигателе, содержащую коленчатый вал. Верхняя часть картера содержит блок цилиндров


Понравилась статья? Поделитесь с друзьями!